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Abstract

Clustering is a popular technique used for data analysis and as a pre processing step. In real

life, shape of clusters of underlying datasets are unknown and in most of the cases they are

irregular. In this dissertation, we have proposed and evaluated a new algorithm for clustering

which performs best for complex shaped datasets. We have also concentrated on the use of

minimal number of parameters to ensure a stability in the clustering performance. The purpose

of this thesis was to investigate the problems and drawbacks of existing clustering algorithms

and to find a clustering method capable of solving those problems and which is suitable for

irregular shape datasets.

We have used fourier transformation and filtering technique to represent the data set in a real

valued functional form. Then we formulated a technique to form clusters from the derived

functional form. Conventional clustering algorithms having problem of parameter selection

show inconsistency in performance. Our work presents a dynamic parameter selection strategy

for our algorithm which gives optimum clustering performance.

Different cluster evaluation metrics are used to compare performance of our algorithm with

other existing algorithms which have shown promising improvement. The MPCACS algorithm

was applied on the same datasets as the other algorithms and the resulting affects were in-

vestigated. The results show that, our algorithm shows significant improvement in clustering

complex shaped datasets and far better performance than the traditional algorithms.

Keywords: Clustering, Density Based Clustering, Unsupervised Learning, Irregular Shapes,

Complex Shapes, Minimal Parameter Clustering.
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Chapter 1

Introduction

1.1 General Introduction

In the world of data mining, clustering is a very popular word as a powerful means of data

analysis and information retrieval technique. Clustering can be used to discover the underlying

pattern and distribution of datasets. In the sense that cluster analysis does not use category

labels that tag objects with prior identifiers or any examples showing the desirable relations

among data, makes it possible to consider it as an unsupervised process.

Clustering Analysis is defined as a way to group relatively homogeneous cases or observations

in a separate set which is different from other sets or objects formed outside this particular

group [JD88,KR90]. Clustering is a form of learning by observation, rather than learning by

examples. Everitt [Eve74] describes ‘cluster’ in the following manner:

• ‘A cluster is a set of entities which are alike, and entities from different clusters are not

alike.’

• ‘A cluster is an aggregation of points in the test space such that the distance between

any two points in the cluster is less than the distance between any point in the cluster

and any point not in it.’

1



1.2. Previous Work 2

• ‘Clusters may be described as connected regions of a multi-dimensional space containing a

relatively high density of points, separated from other such regions by a region containing

a relatively low density of points.’

We focus on the last two definitions of cluster and formulate a method to find clusters based on

distance and density. A basic clustering method will produce clusters as illustrated in figure 1.1.

Although clustering have been the subject of plenty of studies and a large number of clustering

algorithms have been developed, considerable amount of challenges still remain unanswered.

However, dealing with high dimensional datasets is rather new in the field of clustering. On

the other hand, finding clusters in data is a challenging job when the clusters are of widely

differing shapes, sizes, and densities. In most of the cases the data also contains noise and

outliers and makes clustering even harder. So solving these ‘quality’ and ‘scalability’ issues

along with finding methods for optimality have been an issue in the field of clustering.

1.2 Previous Work

In this section we will discuss about the previous works done on clustering. And later on

chapter 2, we will discuss the various weaknesses of these works. Till today many clustering

algorithms have been developed to address different clustering issues. First in section 1.2.1 we

will discuss the traditional clustering algorithms. Then in section 1.2.2 we will discuss the more

recent algorithms that have overcome some of the drawbacks of the traditional algorithms.

1.2.1 Traditional Clustering Algorithms

K-means [JD88] is a well known partitioning method. Objects are classified as belonging to

one of k groups, k chosen as priori. Cluster is selected by calculating the centroid for each

group and assigning object to the group with closest centroid as illustrated in figure 1.2. The

mean of each cluster is marked by a ‘+’. Partitioning algorithms attempt to determine those
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Figure 1.1: Clustering Method

k partitions that optimize a certain criterion function. Typically, the square-error criterion is

used, defined as shown in equation 1.1.

E =
k

∑

i=1

∑

pǫCi

|p−mi|
2 (1.1)

where E is the sum of the square error for all objects in the data set, p is the point in space

representing a given object and mi is the mean of cluster Ci. This criterion tries to make

the resulting k clusters as compact and as separate as possible and worked well when clusters

are compact clouds that are rather well separated from one another. The method is relatively

scalable and efficient in processing large data sets because the computational complexity of the

algorithm is linear and it is order independent. So it can be used for clustering high dimensional
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Figure 1.2: Clustering of a set of objects based on the k-means method.

datasets but it has a great number of quality issues discussed later in section 2.3.1.

Hierarchical clustering algorithms combine or divide existing groups, resulting in a hierarchical

structure that resembles the merge or divide order. Agglomerative method uses the merging

approach where initially the objects belong to a list of singleton sets S1, S2, . . . , Sn. Then a

cost function is used to find the ‘lowest-cost’ pair of sets Si, Sj. Once merged, Si and Sj are

removed from the list of sets and is replaced with the new set Si ∪ Sj . This process continues

until all objects are in a single group. For this process they have to compute the proximity

matrix containing the distance between each pair patterns. This proximity measure is used to

find the most similar pair of clusters. Different variants of agglomerative hierarchical clustering

algorithms use different cost functions. Complete, average and single linkage respectively use

maximum, average and minimum distances between members of two clusters as cost function.

Three widely used measures for distance between clusters are as follows, where |p − p′| is the

distance between two objects or points, p and p′, mi is the mean for cluster, Ci and ni is the

number of objects in Ci. Single, Complete and average linkage respectively use the distance

measures shown in equation 1.2, 1.3 and 1.4.

dmin(Ci, Cj) = minpǫCi,p′ǫCj
|p− p′| (1.2)

dmax(Ci, Cj) = maxpǫCi,p′ǫCj
|p− p′| (1.3)
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davg(Ci, Cj) =
1

ninj

∑

pǫCi

∑

p′ǫCj

|p− p′| (1.4)

All of the above measures have a minimum variance and they usually yield the same results of

the clusters are compact and well separated. But if the clusters are close to one another(even

by outliers), or if their shapes and sizes are not hyper-spherical and uniform, the results can

vary to a large extent.

Self Organizing Maps(SOM) [Abb08] is inspired by neural networks and uses a competition

and cooperation mechanism to achieve unsupervised learning. A set of nodes is arranged in

a geometric pattern, typically 2-dimensional lattice. Each node is associated with a weight

vector with the same dimension as the input space. During training, each object in the input

is presented to the map and the best matching node is identified. The dimension and size of

the map(k) has to be given priori.

Expectation Maximization (EM) is a distance based algorithm that assumes the data set can be

modelled as a linear combination of multivariate normal distributions and the algorithm finds

the distribution parameters that maximize model quality measure, log likelihood. EM is linear

in database size and robust to noisy data. It can be applied to high dimensionality datasets.

1.2.2 Density Based Algorithms

Finding clusters of different shapes and sizes when data contains noise and outlier is a problem

that many recent clustering algorithms, have addressed. For low dimensional data DBSCAN

[EKSX96], CURE [GRS98], and Chameleon [KHK99] have shown good performance.

In case of density based algorithm, traditionally real valued data with varying number of

attributes are handled. They work on relative density of example instance in feature space.

According to the density based clustering definition [TK08], clusters are dense regions in the

data space, separated by regions of lower sample density and A cluster is defined as a maximal

set of density-connected points.



1.2. Previous Work 6

DBSCAN is considered as one of the main success in density based clustering. It uses euclidean

distance measure around a sample point called ‘ǫ− neighbourhood′ and minpts defined as the

minimum number of points required in ‘ǫ− neighbourhood′ for it to be a dense space.

Chameleon builds a list of nearest neighbours of each point and then constructs a weighted

similarity graph using those nearest neighbourhood list, and then partitions the graph using

a graph partitioning algorithm, METIS [KK98] to obtain cluster fragments which are merged

into clusters with a hierarchical agglomerative clustering technique.

CURE also uses the concept of representative points to find many types of non-globular clusters.

This method represents a cluster by using multiple representative points from the cluster. The

first point is chosen to furthest from the cluster centre, while remaining points are chosen

so that they are farthest from all previously chosen points, ensuring the points to be well

distributed. This is a result of the way the CURE algorithm finds representative points, i.e.,

it finds points along the boundary, and then shrinks those points towards the centre of the

cluster by a factor, α. It uses an agglomerative hierarchical scheme to perform the actual

clustering. However, cure is still biased towards finding globular clusters as it still has the

notion of cluster centre. To handle the high dimensionality issue, a shared nearest neighbour

approach to similarity was proposed in ROCK [GRS98] and previously by Jarvis and Patrick

in [JP73]. At first the nearest neighbours of each point are found, and then a new similarity

between points is defined in terms of the shared number of neighbours. Given the new similarity,

ROCK uses agglomerative hierarchical clustering , but the Jarvis-Patrick method only finds

connected components by grouping all points with non-zero similarity.

So we have almost summarized most of the recent clustering approaches that handle some of

the important challenges of clustering. But there are plenty of other works similar to those

discussed. For example, DENCLUE [HK98] and OptiGrid [HK99] are more recent density

based schemes that are likely to match the performance of DBSCAN or even go beyond it.
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1.3 Objective of Thesis

As we have seen, different approaches have been explored previously for finding robust algorithm

which can handle clusters of arbitrary shapes and sizes. Among them density based algorithms

are most successful in terms of finding arbitrary shaped cluster. So we have taken a density

based approach for finding an optimal clustering algorithm. Our method addresses the following

issues:

• Minimal External Parameter for Clustering Analysis

Clustering serves as an important branch of unsupervised learning. In case of unsupervised

learning, as less as possible supervision is desirable. Popular clustering algorithms like Dbscan

which deals with arbitrary shape clusters is sensitive to parameter. So firstly we have tried to

make our algorithm less sensitive to external parameters. As based on the parameters clustering

results may vary from time to time and from user to user. Secondly we tried formulating a

method to find those parameters dynamically for optimum clustering. However, we weren’t

able to totally eliminate the need of it. But we were able to reduce it to one single parameter,

‘filterWidth’. This ‘filterWidth’ is used when calculating the “augmented” density function

f(x) which is developed using Fourier transformation. As minimal parameters are needed, so

no fluctuations in the cluster results.

• Improving scalability of online clustering methods

Clustering is one of the prime techniques to handle the large amount of information present on

the web. Clustering can be performed either offline, independent of search queries, or performed

online on the basis of the results of search queries. Most traditional clustering algorithms are

limited to offline clustering. Besides, many clustering algorithms work well on small data sets

containing fewer than several hundred data objects, but a large database may contain millions

of objects. Clustering on a sample of a given large data set may lead to biased results. So highly

scalable clustering algorithms are needed. Our algorithm aims at improving the performance

of online clustering method and also achieve a better scalability.
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• Incremental clustering

Using some of the advanced algorithms for incremental Fourier algorithm we have tried to

handle new data instance without invoking the whole process. This makes the algorithm more

versatile and suitable for processing continuous stream of data.

• Clustering in High dimensional data space

Clustering high dimensional data has to deal with the “curse of dimensionality” [Bel19]. It

is the most widely seen problem which is data analysis techniques such as clustering ,which

work well at lower dimensions, often work poorly as the dimensionality of the analysing data

increases. We want to solve this problem by using a technique which is generalized for all

dimensions.

• Insensitivity to the order of input records

Most of the current algorithms performance largely depends on the order of the input records.

But this is not an ideal situation. In whatever order data arrives cluster should be the same.

We want to eliminate this problem with our algorithm. We have tried to develop a order

independent clustering algorithm. Our clustering performance will not deteriorate with the

order of data input.

• Finding methods for clustering complex shapes and types of data

Most of the existing clustering algorithms are unable to handle clusters of different sizes and

non-globular or any kind of irregular shapes. These irregular sizes and shapes is a big challenge

to the existing clustering techniques. No single algorithm can give an optimal result for all

kinds of sizes and shapes. Our technique aims at finding a solution to it.

• Handling outlier and noisy data

In clustering, outlier and noisy data are the irregular instances in the dataset that do not follow

any underlying distribution function. Taking them into consideration may lead to bad cluster

outputs. Our algorithm aims at handling them efficiently.
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1.4 Thesis Organization

Our dissertation is organized as follows. Chapter 2 discusses the motivation behind our work

and any necessary literature is also discussed there. The actual clustering algorithm is described

in chapter 3. Our total effort is categorized into two main sections. In the first section, we

show how we create an augmented data distribution function using sample data instances. It

is the core data representation model which is used by all the further steps. Specific data

preprocessing and difficulty in handling some types of data are also highlighted in this section.

A brief idea of scalability of data size and the treatment for the outlier or the noisy data

can be found in this section. In the second section, main algorithm is described with its

mathematical formulations and explanations. It consists of the basic idea behind the algorithm

and approaches taken to overcome the difficulties regarding arbitrary shaped cluster. We show

all possible difficulties which may be faced by the algorithm while clustering the data instance.

Run time complexity and memory requirement for the algorithm is also described at the end

of this section. Moreover, we describe how to choose the only parameter our algorithm needs

dynamically to an optimal level in this section. Strategies for improving performance of some

specific data types is also described here. Chapter 4 comprises of the performance analysis with

different case studies. Synthetic as well as historical bench mark data sets are used to evaluate

performance of our algorithm. We experimentally show that our algorithm performs better than

mostly used clustering methods such as K-means, EM, Hierarchical methods, DBSCAN, CURE

on a variety of datasets: Spiral data, Jain data, Aggregation data, Compound data and many

others. We also show comparison with rarely used algorithms like Cobweb & FarthestFirst and

demonstrate the better performance of our method. Chapter 5 includes the conclusion and

directions for future work.



Chapter 2

Background

2.1 Introduction

Cluster analysis is an important technique in the rapidly growing field of exploratory data

analysis and is being applied in a variety of engineering and scientific disciplines. The purpose

of cluster analysis is to place objects into groups, or clusters, suggested by the data, not defined

a priori, such that objects in a given cluster tend to be similar to each other in some sense, and

objects in different clusters tend to be dissimilar. According to the definition of everitt [Eve74]

discussed in chapter 1, clusters can be defined by means of distance and density. Clusters of

same kind have less distance in between than clusters of different kinds. This results in high

intra-class similarity & low inter-class similarity as shown in figure 2.1. Similarly, density based

clusters can be defined as highly dense points, separated from other such regions by lower

dense points. And cluster analysis can be described as the method of obtaining these clusters.

The interest in cluster analysis is derived from the complexity and scalability issues which are

eminent in real life applications of clustering.

Whether for understanding or utility, cluster analysis has long played an important role in a wide

variety of fields: psychology and other social sciences, biology, statistics, pattern recognition,

10
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Figure 2.1: Clustering Method

information retrieval, machine learning, and data mining. In the context of understanding data,

clusters are potential classes and cluster analysis is the study of techniques for automatically

finding classes. Some important fields are biology for creating taxonomy or finding group of

genes, information retrieval i.e., understanding www & analysing search queries, climate i.e.,

finding patterns in atmosphere and ocean, psychology and medicine i.e., identifying different

categorise or patterns of a disease & business for segmenting customers in groups for analysis

and marketing. Cluster prototypes can be used as the basis for a number of data analysis or

data processing techniques. Therefore, in the context of utility, cluster analysis is the study

of techniques for finding the most representative cluster prototypes. Clustering can be used as

a means of summarization. Many data analysis techniques which are not practical for large

data sets, can be used by applying to a reduced data set consisting of cluster prototypes and

then using those prototypes for entire data set. Clustering prototypes can also be used for data

compression and for finding nearest neighbours. Data compression is known as known as vector

quantization and is often applied to image, sound, and video data.

We are going to discuss the literature & incentive behind our thesis work in this section. We

will discuss about the drawbacks of the algorithms discussed in chapter 1.2 and we will point

out the problems that we are trying to solve.
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2.2 Literature Review

Cluster analysis groups data objects based on underlying information that describes the objects

and their relationships. The superiority of a clustering technique depends on the quality of the

clusters. Clustering is different from classification. It creates a labelling of objects with cluster

labels but it derives these labels only from the data where classification assigns a class label by

developing a model from other labelled objects.

Cluster can be different types. Well separated clusters are those clusters in which each object is

closer to every other object in the cluster than to any object not in the cluster. Well separated

clusters do not need to be globular, they can be of any shape. Prototype based clusters are

those clusters in which each object is closer to its own prototype than to others prototype.

The prototype can be centroid, medoid or any central point. Density based cluster is a dense

region of objects that is surrounded by a region of low density. This definition is often employed

when clusters are irregular or intertwined and when noise and outliers are present. Conceptual

clusters do not work well for these types of data. Conceptual cluster is defined as a set of

objects that share some property. Figure 2.2 shows different types of clusters.

Clustering algorithms can be categorized based on their cluster model. They vary on measur-

ing criterion and proximity measures. Some of them works with similarity measures and some

of them with dissimilarity measures. Normally similarity is expressed in terms of a distance

function, typically metric: d(i, j). They also vary in data types they handle. Data can be dis-

crete valued, continuous or categorical. They can be interval-scaled variables, binary variables,

nominal, ordinal or ratio variables & variables of mixed types. Different similarity metrics for

different types can be found in [JD88,KR90,TK08]. In general, the major clustering methods

can be classified into the following categories: Partitioning methods, Hierarchical methods and

Density based methods. The most important algorithms are discussed in section 1.2.

Connectivity based clustering is based on the core idea of objects being more related to nearby



2.2. Literature Review 13

(a) Well Separated (b) Centre based Clusters

(c) Density Based Clusters (d) Conceptual Clusters

Figure 2.2: Cluster Types

objects than to objects farther away. These algorithms connect ‘objects’ to form ‘clusters’ based

on their distance. At different distances, different clusters will form, which can be represented

using a dendrogram. Hierarchical clustering is an example of this type. In prototype-based

partitional clustering, clusters are represented by a central vector, which may not necessarily be

a member of the data set. When the number of clusters is fixed to k, k-means clustering treats

it as an optimization problem. Using distribution models, clusters can be defined as objects

belonging most likely to the same distribution. One prominent method is known as Gaussian

mixture models which uses the EM algorithm. In density-based clustering, clusters are defined

as areas of higher density than the remainder of the data set. Objects in these sparse areas -

that are required to separate clusters - are usually considered to be noise and border points.

The most popular density based clustering method is DBSCAN.
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Figure 2.3: Bad results for spherical shape clusters using K-means.

2.3 Problem Review

2.3.1 Partitional Clustering Algorithm

K-means is the mostly used partitional algorithm. The k-means method can be applied only

when the mean of a cluster is defined. This may not be the case in some applications, such as

when data with categorical attributes are involved. The necessity for users to specify k, the

number of clusters, is a huge disadvantage. In case of unsupervised or online learning it might

be quite impossible to know the value in advance.

The k-means method is not suitable for discovering clusters with non-globular shapes or clusters

of very different size. The centroid representation alone works well if the clusters are of the

hyper-spherical shape. If clusters are elongated or are of other shapes such as shown in figure

2.3, centroids are not sufficient.

We have seen in section 1.2, k-means tries to minimize the square error. As shown in figure

2.4 illustrated in [GRS97], the square-error method could split large clusters to minimize the

square error. In the figure, the square-error is larger for the three separate clusters in (a) than

for the three clusters in (b) where the big cluster is split into three portions, one of which is

merged with the two smaller clusters. The reduction in square error due to splitting the large
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Figure 2.4: Splitting of a large cluster by partitional algorithms

Figure 2.5: Sensitivity of K-means towards noise and outlier

cluster is weighted by many data points in the large cluster.

Moreover, it is sensitive to noise and outlier data points because a small number of such data

can substantially influence the mean value. This problem is illustrated in figure 2.5. K-means

method is sensitive to initial seeds. Different seeds may result into different clusters as shown

in figure 2.6. So based on the user choice cluster shape and result will be different.
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(a) Selection 1 (b) Selection 2

Figure 2.6: Different results of K-means using different seeds.

2.3.2 Hierarchical Clustering Algorithm

Single link agglomerative clustering is suitable for clusters with non-globular shapes. But it

is sensitive to noise and can’t handle cluster of varying density. It may cause the undesirable

“chain effect” by noisy points. Considering the example data points in the following figure

demonstrated in [GRS97], the desired elongated clusters are shown in figure 2.7a. Single link

clustering causes the two elongated clusters to be merged as a single cluster. This is the ‘chain

effect’ as shown in figure 2.7b.

Complete Link and Group Average Clustering are not affected by noise. But they do have a bias

towards finding globular clusters and they are sensitive to outliers. Average clustering causes

the elongated clusters to be split and portions belonging to neighbouring elongated clusters to

be merged. The resulting clusters are shown in figure 2.7c.

When the number N of input data points is large, hierarchical algorithms break down due to

their non-linear time complexity and huge I/O costs. Another drawback is that user has to

specify the initial number of groups. In hierarchical clustering, proximity matrix or similarity

matrix is an essential part. It has to computed before clustering begins.
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(a) Desired Clusters (b) Single Link (c) Complete Link

Figure 2.7: Clusters generated by hierarchical algorithms

2.3.3 Distribution Based Clustering Algorithm

While the theoretical foundation of these methods is excellent, they suffer from one key problem

known as over fitting, unless constraints are put on the model complexity. A more complex

model will usually always be able to explain the data better, which makes choosing the appro-

priate model complexity inherently difficult. EM will converge to a local optimum, so multiple

runs may produce different results. Using these algorithms puts an extra burden on the user:

to choose appropriate data models to optimize, and for many real data sets, there may be no

mathematical model available the algorithm is able to optimize.

2.3.4 Density Based Clustering Algorithm

DBSCAN uses some key terms: core point, border point and noise point. A point is a core

point if it has more than a specified number of points (MinPts) within Eps which are the points

that are at the interior of a cluster. A border point has fewer than MinPts within Eps, but is in

the neighbourhood of a core point. A noise point is any point that is neither a core point nor

a border point. Noise points are discarded, while clusters are formed around the core points.
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Figure 2.8: Density based Neighbourhoods

An object q is ‘directly density-reachable’ from object p if p is a core object and q is in p’s

e-neighbourhood.

While DBSCAN can find clusters of arbitrary shapes, it cannot handle data containing clusters

of differing densities, since its density based definition of core points cannot identify the core

points of varying density clusters. As in figure 2.8, if the user defines a neighbourhood of a

point by specifying a particular radius and looks for ‘minpts’ within that radius, then either

the tight left cluster will be selected as one cluster and the rest will be considered as noise, or

else all points will belong to one single cluster, neither of which is desirable.

We see from the above definitions that dbscan largely depends on the parameter value ǫ and

minpts. A small change in parameter value can lead to totally different results. Some techniques

are adapted to approximate those parameters but they only work in global context. Clusters

with different density will suffer from misleading parameter value hence leads to poor clustering.

Chameleon does not directly apply the idea of core points. All three methods – DBSCAN,

Chameleon and CURE tackles the problem of finding clusters of different sizes and shpaes by

finding points or small subsets of points and building clusters around them. This method is

especially suitable for spatial data, since non-globular clusters are not represented by their

centroid. And so they cannot be handled by centroid based ideas. Single link agglomerative
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clustering methods are most suitable for finding clusters with non-globular shapes, but these

methods are very fragile and cannot handle noise properly.

Both CURE and DBSCAN have problems with clusters of different density. Chameleon can

partly handle clusters of varying density as it uses the nearest neighbour approach, but it does

not work well for high dimensional data, e.g., documents.

The key drawback of DBSCAN and OPTICS is that they expect some kind of density drop

to detect cluster borders. Moreover, they cannot detect intrinsic cluster structures which are

prevalent in the majority of real life data. DENCLUE is better & faster than DBSCAN, but

needs a large number of parameters.

So we believe we have pinpointed the key issues in density based clustering: using representative

points to deal with differing shapes and sizes, the difficulty of dealing with clusters of differing

densities, the importance of eliminating outliers and noise, and the problems with similarity

measurement which arises mainly in higher dimensions. And the important issue of depending

on external parameters still follows the density based algorithms.

2.4 Summary

K-means and hierarchical method does not work well with outliers, clusters of different sizes

and non-globular shapes. These two methods are sensitive to noise and initial seed choices.

Performance of SOM becomes lower as value of K (number of clusters) becomes greater. SOM

gives better accuracy than hierarchical. And hierarchical gives better accuracy than K-means

and EM. All of them have some ambiguity in noisy data. DBSCAN,CURE and chameleon can

find clusters of different sizes and shapes, but they face problem in finding globular clusters and

in finding clusters of differing densities. Also, all of these methods have a problem of defining

a number of external parameters which can effect the clustering result according to the choice

of those parameters.



Chapter 3

Our Method

3.1 Introduction

Our method mainly consists of two parts: Data representation and cluster formation. We

represent the input data into a functional form so that all necessary information are easy to

access and are noise free. This representation is also the basis of our main algorithm. It has a

probability density function like interpretation, and for this reason in rest of our paper we refer

this as ‘augmented density function’.

Main algorithm uses a ‘linear density reachability’ measure [EKSX96] but the definition is

quite different here. For cluster formation step, we maintain two data structures – one of them

contains all current clusters and other contains the cluster representatives.

3.2 Data Representation

For data compression and signal & image processing, Fourier transformation is an efficient

technique. We adopted fourier transformation technique to represent input sample instance

20
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density in a functional form.

For the sample point (x1, y1), (x2, y2) . . . . . . . . . . . . (xM , yN), at first we transfer data into fre-

quency domain with equation 3.1. Then we use Gaussian low pass filter in frequency domain.

Gaussian filter equation is illustrated in equation 3.2. Applying gaussian filter we get equation

3.4.

F (u, v) =
1

MN

M−1
∑

m=0

N−1
∑

n=0

f(x, y)e−2πj(ux
M
+ vy

N
) (3.1)

H (u, v) = e−D2(u,v)/2σ2

(3.2)

D(u, v) =

√

(u− ϕ1/2)
2 + (u− ϕ2/2)

2 (3.3)

where ϕi is the filter width along different dimensions.

G (u, v) = H (u, v) ∗ F (u, v) (3.4)

Low pass filter is used to smooth out any outlier and any abrupt change in input domain as we

know any cluster will be continuous in attribute space. As specific instance of low pass filter

we use Gaussian low pass filter [BZ08]. Other low pass filter like butterworth and laplacian

filter are also tested but the Gaussian low pass filter serves best for our purpose. Gaussian low

pass filter requires filter width as its input parameter. Finding this parameter efficiently and

effectively will be described later. After that we have to use inverse fourier transformation to

get back our required functional form in attribute domain.

f(x, y) =

M−1
∑

m=0

N−1
∑

n=0

F (u, v)e2πj(
ux
M
+ vy

N
) (3.5)
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(a) Before Filtering (b) After Filtering

Figure 3.1: The Filtering Process

The main reason behind choosing fourier transformation rather than using other well-known

density function is that it requires less parameter and can be represented into functional form

with any arbitrary level of accuracy which will serves us to handle clusters of different density.

For illustration we can compare it with multivariate Gaussian distribution, in that case we have

to find more parameter (σ, µ) and in spite of that it will be lacking representational power.

Some techniques has been already developed to incorporate new data in fourier representation.

That is a huge advantage for any incremental stream data processing with less computational

effort. And we know that order of data is immaterial in case of fourier transformation as long

as the attribute values are only focused in time domain representation. Also higher dimensional

fourier transformation is available for higher dimensional data.

Another reason for selecting fourier representation is that efficient algorithms have already been

developed for finding fourier transformation like fft [Loa92, HIKP12, EMT99, 32]. Dedicated

hardware processors are also available for faster fourier transformation and analysis.

We can easily show that fourier representation of input data set serves as a density function

such that

p (xi, yi) > p (xj , yj) ↔ f (xi, yi) > f (xj , yj)

where p (xi, yi) is the joint probability at point (xi, yi). The filtering process is shown in figure

3.1.
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3.3 The Algorithm

Algorithm 1 MPCACS

Input: Dataset to be clustered
Output: Number of clusters and their cluster centre
1: x ⇐ next sample data
2: p ⇐ f(x)
3: if p < threshold then
4: if x from any of the previous cluster then
5: Check for possibility of merging
6: end if
7: else
8: create a new cluster with x as the cluster centre
9: end if

Algorithm 2 In Previous Cluster

Input: sample instance x
Output: cluster number which x belongs to
1: belonging set ⇐ initialize belonging set to empty
2: for all neighbouring cluster ni of x do
3: if current cluster center ni.c linear density reachable to x then
4: belonging set ⇐ belonging set ∪ni

5: end if
6: end for
7: if size of belonging set is one then
8: return single cluster
9: else

10: merged cluster ⇐ merge(belonging set)
11: end if
12: return merged cluster

Linear density reachability:

A point X is linear density reachable to Y if for all points pi between X & Y, f(pi)>0

3.3.1 Description of our Algorithm

When a new sample comes first we find out whether it in a dense zone or not. If it is in a

dense zone that means it is member of any one of the previous clusters. If this data instance
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Figure 3.2: Work Flow for Linearly Density Reachable Case

is at boundary of two or more clusters then those clusters should be merged into a single one.

If current sample is in dense zone but previously no instance come from that zone then it will

form a new cluster.

Algorithm “in previous cluster” finds from which cluster is the sample from, for this it calcu-

lates linear density reachability with all neighbouring clusters using cluster centres and cluster

representatives.

3.3.2 Intuition behind merging cluster

Linearly density reachable case

For simpler shape clusters like globular or elliptical shapes, new instance will be linearly density

reachable from the initial cluster centre. In first step of figure 3.2, a single cluster is initially

formed which is the smaller elliptical shape with a centre. When a new instance arrives,

algorithm checks whether it is linearly density reachable from previous cluster centre or not.

In this case the answer is positive. So new instance is subsumed into the previous cluster. The

next step shows the new cluster shape. In similar way, when other new instances arrive inside

the simple shape they all will be linearly density reachable and hence form a single cluster

without requiring any merging, or small number of merging.
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Figure 3.3: Non Linearly Density Reachable Case – Work Flow 1

Non linearly density reachable case

Let augmented density function show a star shape region as a dense zone according to input

samples and after some iteration of main algorithm a cluster is formed at certain region like in

the first shape of figure 3.3. Let us name this cluster as ‘Cluster 1’. Again after some iteration

say, another sample have arrived. The centre of ‘Cluster 1’ and new sample is not linearly

density reachable as shown in third step of figure 3.3, so they will not merge. As a result new

sample alone will create a new cluster as in the 4th step of figure 3.3. Let it be ‘Cluster 2’.

After some iteration when a new sample arrives at region such as in first step of figure 3.4,

it will be linearly density reachable from both ‘Cluster 1’ and ‘Cluster 2’ as shown is second

and third step of figure 3.4. So it belongs to both clusters hence there will be two elements in

belonging set . Those two clusters will combine to form a new cluster after merging and cluster

centre will be selected among the two cluster centres where augmented density function will

give higher numeric value.
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Figure 3.4: Non Linearly Density Reachable Case – Work Flow 2

Figure 3.5: Non Linearly Density Reachable Case – Work Flow 3
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Table 3.1: Parameter Selection Data for Aggregation Data Set

Filter Width No. of Clusters
2 1
4 1
8 1
16 4
32 5
48 7
64 8
128 25
256 72

Table 3.2: Performance at different filter widths( Aggregation data )

Filter width Precision Recall Accuracy F-measure G-mean
5 12.50% 4.33% 34.64% 6.43% 2.02%
10 49.08% 40.24% 75.89% 44.22% 11.22%
15 50.00% 42.01% 78.43% 45.66% 11.33%
30 62.50% 55.62% 82.74% 58.85% 17.61%
48 79.73% 77.42% 88.07% 78.55% 87.02%
55 68.14% 69.85% 87.56% 68.98% 28.24%
60 68.14% 69.85% 87.06% 68.81% 28.15%
64 79.89% 77.00% 87.18% 78.42% 86.81%
70 68.26% 69.84% 85.28% 69.04% 27.87%

3.3.3 Parameter Selection

In our data representation step, we used filter-width (fw) parameter for low pass filtering.

From table 3.1 & 3.3 we can see that the number of cluster and performance of the clustering

depends on the filter width. But from parameter selection curve in figure 3.6 & 3.7, we can see

that performance of the algorithm follow a certain trend with respect to the filter width. By

following a simple heuristic we can find the optimum value for this parameter. We choose to

increment the filter width multiplying the width each time with factor of two, find the number

of cluster. We can see that number of cluster is increasing with the increasing filter width. In

some early increments number of cluster increases gradually, but after that it jumps to some big
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Figure 3.6: Parameter Selection Curve for Aggregation Data

Table 3.3: Parameter Selection Data for Spiral Data Set

Filter Width No. of Clusters
2 1
4 1
8 2
16 5
32 5
64 5
128 9
256 33
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Figure 3.7: Parameter Selection Curve for Spiral Data

Table 3.4: Performance at different filter widths( Spiral data )

Filter width Precision Recall Accuracy F-measure G-mean No of Clusters
8 9.24% 25% 45.83% 13.49% 43.30% 2
10 24.51% 32.58% 47.12% 27.97% 50.62% 2
14 61.30% 44.48% 59.62% 51.55% 61.35% 3
16 100% 77.36% 78.21% 87.24% 87.96% 5
32 100% 77.36% 77.24% 87.24% 87.96% 5
48 100% 77.36% 77.56% 87.24% 87.96% 5
64 100% 77.36% 77.56% 87.24% 87.96% 5
96 100% 75% 77.24% 75% 86.60% 6



3.4. Difference with existing works 30

number. We called this the ‘critical point’. The optimum point can be taken anything between

critical point and point before it. But we suggest average of them for better performance.

In figure 3.7, the critical point is at fw = 64, so we can take any value between 64 & 32, or we

can take the average (64+ 32)/2 = 48 as filter width. And we see from table 3.4 that either fw

= 64 or fw = 48 gives optimal performance.

3.3.4 Time & Space Complexity

Complexity of the data representation is dependent on fourier transformation. Using fast

fourier transformation, the complexity of transformation results into O(n logn) for sample

instance with single attribute. If we assume attributes are independent for sample with multiple

attributes, then the complexity becomes O(d n logn) . Where n is the size of sample and d is

the dimension of attribute.

In main algorithm every sample is passed once to fourier transform to get the augmented

density. In worst case all clusters can be neighbour of a sample instance. In that case we need

O(c) time to find linear density reachability for that sample instance. So for all the samples

time complexity will be O(nc).

We need memory only to store fourier coefficient for functional representation and a data

structure of size c for each cluster. In both cases memory requirement is O(n) in worst case.

3.4 Difference with existing works

In most of the previous clustering technique direct distance measure like euclidean norm is

used, but in our approach there is no requirement of such direct measurement. To define

a dense area, we have used the value of our augmented density function but in other cases

most definition needs parameter specification like minimum points within a certain space. To

overcome dependency regarding the order of arrival of sample data, most of the algorithm uses



3.5. Summary 31

multiple pass of data set. We have used single pass for each sample when it arrives. While

our algorithm can find the ‘dense’ clusters like other algorithms find, it also finds clusters that

methods may overlook, i.e, clusters of low or medium density which may be considered as

clusters or outliers.

3.5 Summary

Our algorithm first finds an augmented density function which is developed using fourier trans-

formation. We have only used some low frequency component of fourier transformation which

as a result solves the problem of outliers and noises. Then we find the neighbours of each

data point using a distance based definition for similarity and the augmented density. The

use of density based definition of similarity alleviates problems with varying densities and high

dimensionality, while the use of distance based measurement handles problem with shapes and

size.



Chapter 4

Experimental Studies

4.1 Introduction

In this section, we study the performance of MPCACS and demonstrate its effectiveness for

clustering compared to K-means, EM, Cobweb, FarthestFirst, HierchicalClusterer & Make-

DensityBasedClusterer algorithms implemented in weka. From our experimental results, we

establish the following decisions –

• MPCACS needs the least number of external parameters

• Gives highest accuracy among all methods for the benchmark datasets Spiral and Jain

shapes

• Gives maximum accuracy for different datasets

• Works uniformly throughout all type of datasets

32
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Table 4.1: Characteristics of data sets considered

Dataset Classes Size
Cluster–in–Cluster 2 1012(500,512)
Corners 4 1000 (250,250,250,250)
Half Kernel 2 1000 (500,500)
Crescent Full Moon 2 1000 (250,750)
Outlier 4 600 (276, 24, 24, 276)
Aggregation 7 788 (45,170,102,273,34,130,34)
Compound 6 399 (50,92,38,45,158,16)
Jain 2 373 (275,97)
Spiral 3 312 (101,105,106)

4.2 Data Sets

We have used five 2D artificial data sets Cluster-in-Cluster, Corners, Half-kernel, Crescent

& Full Moon, Outlier as well as Aggregation [GMT07], Compound [Zah71], Jain [JL05] and

Spiral [CY08] data sets to illustrate the experimental studies. Applied data sets consist of

different unified densities such as, clusters inside clusters, multi-density, connected clusters, and

well-separated densities. It allows to evaluate the effectiveness and efficiency of the MPCACS

algorithm over different shapes of data sets. These data sets are summarized in table 4.1 and

depicted in figure 4.1 & figure 4.2. We have implemented the artificial data sets using MATLAB

software.

4.3 Experimental Setup

For implementing our own MPCACS algorithm, we have coded in netbeans IDE in Java. We

have also implemented the performance criteria in the codes. For the implementations of the

built in algorithms we have used the software WEKA. Weka have their own implementation and

interpretation of the algorithms and the accuracy of the algorithms are also calculated in their

code. But we have implemented other performance criteria like precision, recall, F-measure
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(a) Cluster-In-Cluster (b) Corners

(c) Half Kernel (d) Crescent Full Moon (e) Outlier

Figure 4.1: Different types of Artificial Datasets Generated by Matlab
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(a) Aggregation

(b) Compound

(c) Spiral (d) Jain

Figure 4.2: Different types of Shape Datasets
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and G-mean inside the weka interface.

4.3.1 Performance Evaluation Criteria

We have established five criteria for performance evaluation – Accuracy or purity, Precision,

Recall, F-measure and G-mean. Accuracy is a measurement of overall effectiveness of a classi-

fier. Precision is a measure of the accuracy provided that a specific class has been predicted.

Recall is a measure of the ability of a prediction model to select instances of a certain class

from a data set. F-measure is a combination of precision and recall. Specificity corresponds to

the true-negative rate. Geometric mean (g-mean) is used to quantify the classifier performance

in the class imbalance problems by several researchers [SH07, KAKP07]. G-mean is used to

evaluate performance of imbalanced data set [NBP09]. G-mean indicates the balance between

classification performances on the majority and minority class.

We have used the confusion matrix approach to implement our performance evaluations. A

confusion matrix [PFK98] contains information about actual and predicted classifications done

by a classification system. The confusion matrix shows how the predictions are made by the

model. The rows correspond to the known class of the data, i.e. the labels in the data. The

columns correspond to the predictions made by the model. The value of each of element in

the matrix is the number of predictions made with the class corresponding to the column for

examples with the correct value as represented by the row. Thus, the diagonal elements show

the number of correct classifications made for each class, and the off-diagonal elements show
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Figure 4.3: Confusion Matrix for a 3 Class dataset

the errors made. So the accuracy can be defined as:

Accuracy =

∑

nii

n

where nii is the number of correct classifications for each class which is the diagonal element

in confusion matrix and n is total number of classes.

Let us consider a three class problem with the classes A, B, and C. A predictive model may

result in the following confusion matrix when tested on independent data. So in the calculations

below, we will use this abstract confusion matrix in figure 4.3 for notation from [19].

Here tpi are true positive for Ci, and eij is misclassified classes which are predicted as class Cj

when actual class is Ci.

Precision for class A, PrecisionA = tpA
tpA+eBA+eCA

Recall for class A, RecallA = SensitivityA = tpA
tpA+eAB+eAC

Specificity for class A, SpecificityA = tnA

tnA+eBA+eCA

where tnA = (tpb + eBC + eCB + tpc)
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Measures for multi-class classification [SL09] for many classes Ci are as follows:

PrecisionM =

∑

Precisioni

l

PrecisionM =

∑

Precisioni

l

RecallM =

∑

Recalli
l

SpecificityM =

∑

Specificityi
l

F − scoreM =
2 ∗ PrecisionM ∗ RecallM
PrecisionM + RecallM

G−mean =
√

Sensitivity ∗ Specificity

Here l is the number of clustered instances & M denotes macro-averaging.

4.4 Result

Table 4.2 shows the parameters which has to be given priori to different methods. Then table

4.3 to 4.11 shows different dataset with comparisons and in attached figures, we show the

clusters produced by MPCACS for different datasets. Figure 4.4 shows some of the different

augmented densities that is produced in the process . Figure 4.5 to figure 4.13 shows the actual

clusters by MPCACS with the red rectangles as centres.
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Table 4.2: External Parameters used by different algorithms

Algorithm External Parameters
MPUCHD Filterwidth
K-means numClusters

maxIterations
seed

EM maxIterations
maximumNumberOfClusters
minLogLikelihoodImprovementCV
minLogLikelihoodImprovementIterating
minStdDev
numClusters
numFolds
seed

Cobweb Seed
Cutoff
acuity

FarthestFirst numClusters
seed

HierarchicalClusterer distanceFunction
linkType
numClusters

MakeDensityBasedClusterer minStdDev
clusterer

Table 4.3: Aggregation Results

Aggregation (Filter width = 64)
Algorithm Precision Recall Accuracy/Purity F-measure G-mean
MPCACS 79.89% 77.00% 87.18% 78.42% 86.81%
K-means (K = 2) 14.39% 28.57% 51.14% 19.14% 50.76%
K-means (K = 5) 66.38% 70.52% 89.59% 68.39% 83.06%
K-means (K = 7) 74.37% 74.65% 78.30% 74.51% 85.53%
EM 99.73% 83.26% 69.16% 90.75% 91.22%
Cobweb 100% 31.28% 17.39% 47.66% 55.93%
FarthestFirst 14.76% 28.57% 51.14% 19.47% 50.71%
HierarchicalClusterer 19.53% 28.57% 40.36% 23.20% 49.85%
MakeDensityBasedClusterer 14.77% 28.52% 51.02% 19.46% 50.66%
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(a) Aggregation (b) Spiral

(c) Jain (d) Compound

(e) Corners (f) Outlier

Figure 4.4: Augmented Density of Different Datasets
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Table 4.4: Compound Results

Compound (Filter width = 64)
Algorithm Precision Recall Accuracy/Purity F-measure G-mean
MPCACS 68.14% 99.58% 70.43% 80.91% 82.53%
K-means (K = 2) 21.36% 33.33% 62.66% 26.03% 55.23%
K-means (K = 5) 69.60% 71.52% 84.96% 70.55% 83.14%
K-means (K = 7) 70.96% 64.59% 63.41% 67.60% 77.84%
EM 78.97% 55.52% 56.14% 65.20% 74.02%
Cobweb 100.00% 33.44% 24.31% 50.12% 57.83%
FarthestFirst 20.82% 33.33% 62.66% 25.63% 54.94%
HierarchicalClusterer 21.95% 33.33% 62.66% 26.47% 55.28%
MakeDensityBasedClusterer 21.68% 33.33% 62.66% 26.27% 55.26%

Table 4.5: Jain Results

Jain (Filter width = 16)
Algorithm Precision Recall Accuracy/Purity F-measure G-mean
MPCACS 100.00% 86.47 % 90.61% 92.74 % 92.98%
K-means (K = 2) 84.32% 91.69% 88.20% 87.85% 91.69%
K-means (K = 5) 100.00% 53.05% 42.90% 69.32% 72.83%
K-means (K = 7) 100.00% 39.51% 33.24% 56.64% 62.85%
EM 95.75% 69.20% 54.42% 80.34% 82.50%
Cobweb 100.00% 10.56% 10.19% 19.11% 32.49%
FarthestFirst 84.15% 91.85% 87.94% 87.83% 91.85%
HierarchicalClusterer 87.10% 50.52% 74.26% 63.94% 50.52%
MakeDensityBasedClusterer 84.98% 91.57% 89.01% 88.15% 91.57%

Table 4.6: Spiral Results

Spiral (Filter width = 64)
Algorithm Precision Recall Accuracy/Purity F-measure G-mean
MPCACS 100% 77.36% 77.56% 87.24% 87.96%
K-means (K = 2) 23.51% 34.76% 35.26% 28.05% 48.40%
K-means (K = 5) 23.51% 34.76% 35.26% 28.05% 48.40%
K-means (K = 7) 54.02% 25.55% 25.64% 34.7% 47.43%
EM 23.49% 34.75% 35.26% 28.03% 48.39%
Cobweb 79.18% 43.72% 42.31% 55.84% 56.28%
FarthestFirst 23.72% 35.09% 35.58% 28.31% 48.69%
HierarchicalClusterer 50.08% 66.67% 66.35% 57.19% 74.39%
MakeDensityBasedClusterer 23.72% 35.07% 35.58% 28.30% 48.68%
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Table 4.7: Corners Results

Corners (Filter width = 32)
Algorithm Precision Recall Accuracy/Purity F-measure G-mean
MPCACS 100% 100% 100% 100% 100%
K-means (K = 2) 25.07% 50% 50% 33.39% 64.54%
K-means (K = 5) 91.56% 74.4% 74.4% 82.10% 85.10%
K-means (K = 7) 100% 62.5% 62.5% 76.92% 79.06%
EM 100% 57.0% 57.0% 72.61% 75.49%
Cobweb 100% 34.2% 34.2% 50.97% 58.48%
FarthestFirst 26.56% 50% 50% 34.68% 64.55%
HierarchicalClusterer 25% 50% 50% 33.33% 64.54%
MakeDensityBasedClusterer 25.11% 50% 50% 33.43% 64.54%

Table 4.8: Outlier Results

Outlier (Filter width = 32)
Algorithm Precision Recall Accuracy/Purity F-measure G-mean
MPCACS 100% 100% 100% 100% 100%
K-means (K = 2) 46.29% 50.0 % 92.0 % 48.07% 69.38%
K-means (K = 5) 50.32% 46.82% 44.16% 48.51% 65.80%
K-means (K = 7) 65.89% 72.37% 49.16% 68.98% 83.07%
EM 100% 71.28% 47.16% 83.23% 84.43%
Cobweb 100% 54.34% 16.0% 70.42% 73.72%
FarthestFirst 23.02% 25.18% 46.33% 24.05% 43.5%
HierarchicalClusterer 36.98% 50.0 % 50.0 % 42.51% 61.99%
MakeDensityBasedClusterer 46.29% 50.0 % 92.0 % 48.07% 69.38%

Table 4.9: Half Kernel Results

Half Kernel (Filter width = 32)
Algorithm Precision Recall Accuracy/Purity F-measure G-mean
MPCACS 100% 100% 100% 100% 100%
K-means (K = 2) 52.1% 52.1% 52.1% 52.1% 52.1%
K-means (K = 5) 83.22% 39.4% 39.4% 53.48% 59.58%
K-means (K = 7) 100% 32.1% 32.1% 48.6% 56.65%
EM 100% 19.5% 19.5% 32.64% 44.16%
Cobweb 100% 6.5% 6.5% 12.21% 25.5%
FarthestFirst 53.4% 52.6% 52.6% 52.99% 52.6%
HierarchicalClusterer 100% 100% 100% 100% 100%
MakeDensityBasedClusterer 51.71% 51.7% 51.7% 51.71% 51.7%
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Table 4.10: Crescent Full Moon Results

Crescent Full Moon (Filter width = 32)
Algorithm Precision Recall Accuracy/Purity F-measure G-mean
MPCACS 100% 100% 100% 100% 100%
K-means (K = 2) 74.18% 82.2% 73.3% 77..98% 82.2%
K-means (K = 5) 100% 65.07% 47.60% 78.84% 80.66%
K-means (K = 7) 100% 40.47% 32.5% 57.62% 63.61%
EM 100% 20.07% 16.3% 33.43% 44.8%
Cobweb 100% 12.67% 11.4% 22.49% 35.59%
FarthestFirst 64.4% 68.0% 69.8% 66.16% 68.0%
HierarchicalClusterer 100% 100% 100% 100% 100%
MakeDensityBasedClusterer 72.85% 80.2% 70.3% 76.35% 80.2%

Table 4.11: Cluster-In-Cluster Results

Cluster-In-Cluster (Filter width = 32)
Algorithm Precision Recall Accuracy/Purity F-measure G-mean
MPCACS 100% 100% 100% 100% 100%
K-means (K = 2) 52.2% 52.2% 52.17% 52.2% 52.2%
K-means (K = 5) 100% 63.28% 62.85% 77.51% 79.55%
K-means (K = 7) 99.71% 30.38% 30.33% 46.57% 55.09%
EM 25.29% 50% 50.59% 33.59% 50%
Cobweb 97.7% 57.91% 57.41% 72.72% 75.2%
FarthestFirst 55.42% 55.24% 55.14% 55.34% 55.25%
HierarchicalClusterer 100% 100% 100% 100% 100%
MakeDensityBasedClusterer 51.91% 51.9% 51.87% 51.91% 51.9%
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Figure 4.5: Aggregation Cluster by MPCACS

Figure 4.6: Compound Cluster by MPCACS
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Figure 4.7: Jain Cluster by MPCACS

Figure 4.8: Spiral Cluster by MPCACS
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Figure 4.9: Cluster-In-Cluster Cluster by MPCACS

Figure 4.10: Corners Cluster by MPCACS
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Figure 4.11: Outlier Cluster by MPCACS

4.5 Analysis

Some of the datasets worked perfectly in a single run. With the default value of filter width —

32 they give the maximum performance possible. Experiments on some specific data sets were

repeated several times independently to find the optimal ‘filterWidth’ value which in return

gives the best result. The k-means portion of tables from 4.3 to 4.11 shows the fluctuations

in cluster results due to different parameter choice of K-means algorithm and the total table

summarizes the results of MPCACS algorithm over nine data sets based on any improvement

in the purity and g-means. Some data sets such as Aggregation and Compound have been

initialized with a lower purity, then with the parameter selection technique we get the optimal

result. This is shown in table 3.2. After some iterations they reached to the optimal results.

In contrast, some data sets reaches the optimal results in a single run with default value of

filterWidth.

Figure 4.14 & 4.16 shows the macro F-measure values and Accuracy of the compared methods.



4.5. Analysis 48

Figure 4.12: Half Kernel Cluster by MPCACS

Figure 4.13: Crescent Full Moon Cluster by MPCACS
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Figure 4.14: F-measure, Precision, Recall and Accuracy of the compared methods on Spiral
Dataset

Figure 4.15: G-means of the compared methods on Spiral Dataset
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Figure 4.16: F-measure, Precision, Recall and Accuracy of the compared methods on Crescent
Full Moon Dataset

Figure 4.17: G-means of the compared methods on Crescent Full Moon Dataset
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Figure 4.18: Accuracy of different methods on different datasets

The results show that MPCACS method has higher F-measure and accuracy than other com-

pared methods on spiral & crescent full moon datasets. Figure 4.15 & 4.17 shows the G-mean

values of the compared methods. The results show that MPCACS has higher G-mean than

other compared methods on spiral & crescent full moon datasets. This is true for all our tested

datasets.

Figure 4.18 shows that MPCACS gives maximum accuracy which is 100% for almost all data

sets. And MPCACS gives almost uniform result for all type of dataset. In the case of Jain

dataset 12 un-clustered instances are considered as outlier & have been dumped which shows

that our algorithm also handles the outlier detection part successfully.

4.6 Comparison

The comparison results of different clustering algorithms over all data sets are shown in Figure

4.18, 4.19 & 4.20. The MPCACS have the highest accuracy for each data set than other

algorithms. For examples, in the Corners data set from Table 4.7, accuracy of MPCACS is



4.6. Comparison 52

Figure 4.19: G-means of different methods on different datasets

Figure 4.20: F-measure of different methods on different datasets
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100% and the second best accuracy is 74.4% which is of K-means provided that K=5. Also

MPCACS has higher values of G-mean and F-measure than its counterpart. In the Corners

data set, the mean values of MPCACS & K-means are , 100% & 85.10% receptively. This

finding suggests that the MPCACS exhibits good classification rates for all clusters. Other

mentionable comparison points are given as follows:

• MPCACS is the only method which needs a single external parameter where others need

to have at least more than one.

• MPCACS gives uniform accuracy over all data sets where other data sets show fluctuations

over different dataset.

• MPCACS have better g-means over imbalanced dataset which means it gives good per-

formance in both positive and negative example.

• In case of separable datasets MPCACS gives maximum accuracy where other datasets

may give near maximum accuracy at most.

• In case of data set which is connected is a bad case for MPCACS i.e., compound dataset.

In case of those datasets it gives slightly bad performance.

4.7 Summary

From the above experimental studies, we can come to a conclusion that MPCACS is a better

algorithm than the existing clustering algorithms. In case of most type of data our algorithm

gives better performance than others. Even when the accuracy is less than others it is in toler-

able range. So MPCACS can be a consistent solution to the unsupervised learning problem.



Chapter 5

Conclusion

5.1 Summary of Thesis Achievements

We have proposed a novel clustering algorithm for unsupervised learning which is capable of

handling outliers and noises with the distinct feature of using minimal external parameter. Our

algorithm can handle data of different sizes and shapes and data of different densities also. The

only parameter our algorithm needs is not a mandatory user input. It can be dynamically

calculated by MPCACS easily. And it is not necessary to bracket filter-width every time.

Most of the times we will get maximum performance with the default value. So MPCACS can

be a better approach to unsupervised learning method via clustering for almost all possible

situations and applications.

5.2 Future Work

For the connected regions which are joined by elongated shape of density sometimes gives a bad

approximation. In some cases we consider the connected clusters as a single one. We would

like to use ‘partition’ on those clusters to approximate them more accurately. We will try to

54
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improve performance by dividing the attribute space on the basis of Fourier spectrum energy

to identify the different density zone and treat them separately. We are also trying other data

compression methods like single valued decomposition for data representation.



Bibliography

[19] http://www.cs.odu.edu/ mukka/cs495s13/lecturenotes/chapter5/recallprecision.pdf.

Lecturenotes/Chapter5/recallprecision.

[32] http://en.wikipedia.org/wiki/fast fourier transform. Fast Fourier Transformation.

[Abb08] Osama Abu Abbas. Comparisons between data clustering algorithms. International

Arab Journal of Information Technology, Vol. 5(No. 3), July 2008.

[Bel19] R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University

Press, Princeton, New Jersey, 19.

[BZ08] Herman J. Blinchikoff and Anatol I. Zverev. Filtering in the time and frequency

domains. Video Lectures by MIT, Nov. 24 2008.

[CY08] H. Chang and D.Y. Yeung. Robust path-based spectral clustering. Pattern Recog-

nition, 41(1):191–203, 2008.

[Das02] Sanjoy Dasgupta. Performance guarantees for hierarchical clustering. In 15th An-

nual Conference on Computational Learning Theory, volume 40, pages 351–363,

2002.

[EKSX96] Martin Ester, Hans-Peter Kriegel, Jrg Sander, and Xiaowei Xu. A density-based

algorithm for discovering clusters in large spatial databases with noise. In KDD 96,

pages 226–231. AAAI Press, 1996.

56



BIBLIOGRAPHY 57

[EMT99] A. Edelman, P. McCorquodale, and S. Toledo. The future fast fourier transform.

SIAM J. Sci. Computing, 20:1094–1114, 1999.

[Eve74] B.S. Everitt. Cluster Analysis. John Wiley & Sons, Inc., New York, 1974.

[Fis87] D. Fisher. Knowledge acquisition via incremental conceptual clustering. Machine

Learning, 2(2):139–172, 1987.

[GLF90] J. H. Gennari, P. Langley, and D. Fisher. Models of incremental concept formation.

volume 40, pages 11–61. Artificial Intelligence, 1990.

[GMT07] A. Gionis, H. Mannila, and P. Tsaparas. Clustering aggregation. ACM Transactions

on Knowledge Discovery from Data (TKDD), 1(1):1–30, 2007.

[GRS97] Sudipto Guha, R. Rastogi, and K. Shim. Cure: A clustering algorithm for large

databases. Technical report, Bell Laboratories, Murray Hill, 1997.

[GRS98] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Rock: A robust clustering

algorithm for categorical attributes. In In Proceedings of the 15th International

Conference on Data Engineering, 1998.

[HIKP12] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Simple and prac-

tical algorithm for sparse fourier transform. ACM-SIAM Symposium On Discrete

Algorithms (SODA), Kyoto, January 2012.

[HK98] Alexander Hinneburg and Daniel. A. Keim. An efficient approach to clustering

in large multimedia databases with noise. In Proceedings of the 4th International

Conference on Knowledge Discovery and Data Mining. AAAI Press, 1998.

[HK99] A. Hinneburg and D. Keim. Optimal grid-clustering: Towards breaking the curse of

dimensionality in high-dimensional clustering. In VLDB 99. Edinburgh, Scotland,

1999.



BIBLIOGRAPHY 58

[Hoc85] Shmoys Hochbaum. A best possible heuristic for the k-center problem. Mathematics

of Operations Research, 10(2):180–184, 1985.

[JD88] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Prentice-Hall,

Inc., Upper Saddle River, NJ, USA, 1988.

[JL05] A. Jain and M. Law. Data clustering: A user’s dilemma, volume 3776. Lecture

Notes in Computer Science, 2005.

[JP73] R. A. Jarvis and E. A. Patrick. Clustering using a similarity measure based on

shared nearest neighbors. IEEE Transactions on Computers, Vol. C-22(No. 11),

November 1973.

[KAKP07] M.G. Karagiannopoulos, D.S. Anyfantis, S.B. Kotsiantis, and P.E. Pintelas. Lo-

cal cost sensitive learning for handling imbalanced data sets. In Mediterranean

Conference on Control & Automation, 2007, pages 1–6, 2007.

[KHK99] George Karypis, Eui-Hong Han, and Vipin Kumar. Chameleon: A hierarchical

clustering algorithm using dynamic modeling. IEEE Computer, Vol. 32(No. 8):68–

75, August 1999.

[KK98] G. Karypis and V. Kumar. Mulitlevel algorithms for multi-constraint graph parti-

tioning. Technical report, University of Minnesota, Minneapolis, MN, 1998.

[KR90] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction to

Cluster Analysis. John Wiley & Sons, Inc., Hoboken, NJ, USA, 1990.

[Loa92] Charles Van Loan. Computational frameworks for the fast fourier transform. SIAM,

1992.

[NBP09] G. Hoang. Nguyen, A. Bouzerdoum, and S. Phung. Learning pattern classification

tasks with imbalanced data sets, volume 3776, chapter 10, pages 193–208. P. Yin

(Eds.), Pattern recognition, Vukovar, Croatia: In-Teh, 2009.



BIBLIOGRAPHY 59

[PFK98] Foster Provost, Tom Fawcett, and Ron Kohavi. The case against accuracy esti-

mation for comparing induction algorithms. In ICML, volume 40, pages 351–363,

1998.

[SH07] Chao-Ton Su and Yu-Hsiang Hsiao. An evaluation of the robustness of mts for

imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 19:1321–

1332, 2007.

[SL09] Marina Sokolova and Guy Lapalme. A systematic analysis of performance measures

for classification tasks. Information Processing & Management, 45(4):427–437, 2009.

[TK08] Sergios Theodoridis and Konstantinos Koutroumbas. Pattern Recognition. Aca-

demic Press, 4th edition, 2008.

[Zah71] C.T. Zahn. Graph-theoretical methods for detecting and describing gestalt clusters.

IEEE Transactions on Computers, 100(1):68–86, 1971.


