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Summary 

Our algorithm can handle complex & arbitrary shapes of clusters. In our approach, parameter t and ε will not affect the clustering 

performance, only run time will vary a little. For fitting augmented distribution to dataset no parameter or prior knowledge is 

required. It helps online clustering to be more reliable & parameter independent. In our current algorithm, categorical data are not 

handled. But there is a scope to introduce categorical data within this algorithm. Time complexity increases with the feature 

dimension for dependent features. But we can preprocess the data to distinguish the main features using principle component analysis 

to reduce the feature dimension and as a result time complexity will be also improved. 

Our objective is to design a new clustering algorithm that fulfills the following qualities: 
 

● Minimal External Parameter for  Clustering Analysis 

● Improving scalability of  online clustering methods 

● Incremental clustering and insensitivity to the order of input records  

● Finding methods for clustering complex shapes and types of data  

● Clustering in  High dimensional data space 

3. Objectives 

● Some  clustering  algorithms  cannot  incorporate  newly  inserted  data  (i.e.,  database updates) into existing clustering 

structures and, instead, must determine a new clustering from scratch.  

● Some clustering algorithms are sensitive to the order of input data. 

● Most  real-world  databases  contain  outliers, missing data, unknown data or erroneous  data. Some  clustering  algorithms  are  

sensitive  to  such  data  and  may  lead  to  poor quality clusters. 

● A  database  or  a  data  warehouse  can  contain  several  dimensions  or  attributes. Finding clusters of data objects in high 

dimensional space is challenging, especially considering that such data can be sparse and highly skewed. 

2. Problem Definition 
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4. Our Method 
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 Algorithm 2:  in_which_cluster(S) 

 

Complex Colored Cluster Samples 

Augmented Distribution 

Algorithm 1: merge and span cluster(S) 
 
1. Set of Cluster C←Null 

2. Set of Cluster representative R←Null 

3. For each sample S 

4. If π( S) > t 

5. k  ← in _which_cluster(S) 

6. If k >= 0 

7. If  π( S) > π( k.center) 

8. Make Si as new cluster center of cluster C 

9. Else 

10. Create a new cluster  Q with Si as cluster center 

11. C ← C U {Q} 

12. End if 

13. End if 

14. Add sample Si to the augmented distribution 

15. End for 

Belonging set, B←Null 

For all neighbor cluster C 

 σ ← line_intregal(s,C.center)  

 ι← length(s,C) 

 difPi = | π( c.center) σ/ ι |  

 if difPi < ε 

  B ← B U {C} 

 End if 

End  for 

If  B has single element C' 

 return C'.cluster_index 

else if B has more then single element 

 merge those cluster 

  return cluster index 

else 

 for all neighbor representative  r of S from R 

 σ ← line_intregal(S,r) 

 ι← length(S,r)  

 difPi = | π( r) σ/ ι |  

 if difPi < 2ε 

  R← R U {r}  

  B← B U {r} 

 End if  

 End  for 

If  B has single element C'  

 return C'.cluster_index 

else if B has more then single element  

 return most probable one 

Linear path does not inscribe within 

augmented distribution. So line integral σ is 

small and ε<difPi<2ε  will hold. So new sample 

will be a representative for this cluster. 

Merging using Cluster Center 

● Existing clustering algorithms generally use Euclidean or Manhattan 

distance  measures for forming clusters. Algorithms  based  on  such  

distance  measures  tend  to  find  spherical clusters with similar size and 

density. But a cluster could be of any arbitrary shape. 

 ● Most of  the existing  clustering  algorithms  require  certain  input  

parameters  to  be explicitly incorporated. The clustering results can be 

quite sensitive to input parameters. Parameters are difficult to determine 

for data sets containing high dimensional objects. Complex Data Sets 

Merging using Cluster Representative 

To handle the outlier and complex shape cluster data we have initially developed an “augmented” density 

function 𝑓 𝑥  using Fourier transformation such that if  𝑃(𝑥𝑖) > 𝑃 𝑥𝑗  then 𝑓(𝑥𝑖) > 𝑓 𝑥𝑗 , where 𝑃(𝑥) is 

the probability density function of sample distribution. To update this augmented density function for every 

new sample we have to do a little calculation since 𝐹(𝑢)=𝐹∗(𝑢) + 𝑓(𝑥)𝑒−𝑗2𝜋𝑥/𝑀, where 𝐹∗(𝑢) is previous 

Fourier coefficient and 𝐹(𝑢) is the updated one . To filter the outlier we have only used some low frequency 

component of Fourier transformation. Once “augmented” density function is ready, algorithm 1 is invoked to 

do the rest of the clustering procedure. In algorithm 1, we have used algorithm 2 to find out in which cluster 

any sample point is situated. 

 

 

Input: new sample(s) 

Output: which cluster contains input sample 

 

5. Simulation Output  
Some snapshots of a simulation run of our proposed algorithm is shown here. As new sample arrives from the input dataset, the 

augmented distribution changes and it forms a new cluster or joins any existing clusters.  
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Clustering Analysis is defined as a way to group relatively homogeneous cases or observations in a separate set which is different 

from other sets or objects formed outside this particular group. Clustering is a form of learning by observation, rather than learning 

by examples. In machine learning, clustering is an example of unsupervised learning.  

1. Introduction 

Clustering do not rely on predefined classes and class-labeled training examples. By 

automated clustering, we can identify dense and sparse regions in object space and, 

therefore, discover overall distribution patterns and interesting correlations among 

data attributes. Cluster analysis has been widely used in numerous applications, 

including market research, pattern recognition, data analysis, and image processing.  
 

Our approach focuses on developing a parameter less clustering technique which  is 

effective for clustering complex shapes and types of data. We also focus on 

formulating a high dimensional clustering technique along the way.  

 

 

Result of a cluster analysis  
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