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ABSTRACT

Existing multi-media retrieval models either rely on creating a

common subspace with modality-specific representation models or

require schema mapping among modalities to measure similarities

among multi-media data. The heterogeneity gap between explic-

itly mentioned properties in the information need and low-level

representation features used in the retrieval models makes them

unusable in certain systems. Our goal is to avoid the annotation

overhead incurred from considering retrieval as a supervised clas-

sification task, and re-use the pre-existing properties in the system.

We propose FemmIR, a framework to retrieve multi-media results

relevant to information needs expressed with data examples from

various modalities. Such identification is necessary for real-world

applications where computational resources are scarce and rapid

turnaround is required. Our technique is based on weak supervi-

sion introduced through edit distance between samples: graph edit

distance can be modified to consider the cost of replacing a data

sample in terms of its properties, and relevance can be measured

through the implicit signal from the amount of edit cost among

the objects. Unlike metric learning or encoding networks, FemmIR

re-uses the high-level properties and maintains the property-value

and relationship constraints with a multi-level interaction score

between data samples and the query example provided by the user.

We also proposed a novel attribute recognition model from unstruc-

tured text, HART as a property identifier. We empirically evaluate

FemmIR and HART on a missing person use-case with a combina-

tion of a real and synthetic dataset. HART successfully identifies

human attributes from large unstructured text without additional

training. FemmIR performs comparably to similar systems in de-

livering on-demand retrieval results with exact and approximate

similarities while using the existing properties in the system.
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1 INTRODUCTION

With the influx of media collections, exploratory data analysis re-

quires comparing data from different modalities to grasp a more

informed decision for any phenomenon. With the ever-growing

size of the multi-media data, multi-modal data analysis becomes

difficult for any real-world application-specific information needs,

specially when there is heterogeneity among data properties in

different modalities and information needs. Current data discovery

systems rely on manual lookup, exploration of the relational data-

base structure, or cross-modal information retrieval for the data

preparation task. Traditional cross-modal retrieval models create a

common representation space to compare the similarities between

data sources, whereas relational query models find the user inten-

tions from the query history and deliver the data tuples that match

the user preference model. However, having a common subspace to

translate all incoming data, or designing new queries for every new

modality causes a system with existing properties to fail. So we ask

the question, how can we handle data retrieval in applications with

existing object properties and explicit information needs?

Two common reasons retrieval systems with application-specific

information needs fail are: (1) disconnect between high-level in-

formation needs and low-level object properties, and (2) lack of

annotated data compared to the size of the multimedia data. Object

properties are often specified to the system as high-level infor-

mation needs, whereas most retrieval systems use representation

models to gather low-level features from different modalities be-

fore mapping them into the common subspace to compare them.

Multi-modal systems that can process high-level information need

described as properties [39, 61] often have to handle retrieval from

a large repository, or streaming data. [61] expects to process 60,000

frames per minute from the camera feeds [64], whereas on average

6,000 tweets are generated per second in [61]. Most retrieval sys-

tems cannot process data ingestion for these large amounts of data,

and annotating them for training to discriminate between relevant

and irrelevant, is a near-impossible task.

Therefore, in case of application-specific information needs, one

should explore a retrieval system that would use existing object

properties in the data. Examples of commonly observed retrieval

system failures caused by explicit information need include: (1)

decline of model accuracy (due to using the same property identi-

fiers for all systems, and lack of generalization), (2) waste of com-

putational resources (due to re-running identifiers), (3) excessive

processing time (due to failure to scale to large data), (4) inability to

incorporate new modalities (due to incoherent representation and

redundant properties), and (5) system crash (due to invalid modali-

ties beyond design). These examples indicate a common problem:

mismatch between properties in the information need and in the

data, as well as dependence on annotations. To motivate our work,

we start with an example inspired by a real-world system, where

local law enforcement officers asked for assistance to sift through

hours of videos [64].
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Example 1.1 (Object-property focused Information Need). An

agency wants to build an automated system to find persons of interest

from many hours of video feeds. Incident reports and text queries were

considered to be text modalities. Alex is asked to develop a machine

learning (ML) pipeline over this dataset to predict the videos where

the person mentioned in the text would be found, and, subsequently,

the authority would look for them in those videos. Alex decides to use

an off-the-shelf retrieval algorithm that is trained over video and text

multi-media data. But the performance was not satisfactory. Alex was

not able to modify the model to focus on specific properties which are

most common for a missing person. On the other hand, he could not

run transfer learning as the annotated data is very difficult to achieve

in this case, where one positive case occurs in 8-10 hours of video. Now

he wonders: (1) how can he re-train the retrieval model without any

training data to focus similarity on the desired features? (2) If he runs

a property identifier in each data modality and performs only explicit

matching would that achieve the desired performance? (3) How can

he map similar properties from each modality?

Existing tools [19, 63] that use encoder-decoder architecture or

metric learning tomap low-level features to a common space cannot

explicitly consider high-level properties. Also, the system required

a soft-match approach rather than an exact match since finding

persons-of-interest is a sensitive use case, and although organiza-

tions want to ease their workload, they do not want to commit

any mistakes. Example 1.1 is one among many incidents in real-

world applications where similarities among multi-media sources

are required with a focus on specific object properties [citations].

As mentioned in prior work [13], “21% of the bugs encountered in

Microsoft Azure services were due to inconsistent assumptions about

data format [32]. Furthermore, 83% of the data-format bugs were

due to inconsistencies between data producers and consumers, while

17% were due to mismatches between different consumer interpreta-

tions of the same data. Similar incidents happened due to misspelling

and incorrect date-time format [48], and issues pertaining to data

fusion where schema assumptions break for a new data source [9, 66].”

Hence a retrieval system must handle the inconsistent assumptions

about object properties from different data sources. We provide an-

other example where a system fails with the introduction of novel

modalities or data sources.

Example 1.2 (Mismatched Properties across Data Sources). As

pointed out as an example in prior work [47], “An organization within

the Air Force collects data from sensors to support data scientists

in producing data-driven reports for decision-makers. This vast and

heterogeneous data is organized across hundreds of tables in a data

lake, each with a different schema.” DICE [47] helps in finding the

right data sources by finding join paths across tables and involving

human-in-the-loop. But as new tables from different sensors are

added, there is no guarantee the previous joins will hold.

The aforementioned examples bring forth three key challenges.

First, we need to find a common representation model for object

properties from all modalities and map them into a common em-

bedding space for the downstream similarity matching task. Second,

the similarity of the data samples needs to bemeasured in a manner

that captures the approximate matches. For example, two records

can be similar if they have the “same entities”, and/or they describe

the “same event”. Third, for the retrieval model, we need to find a

training method in absence of annotated data.

Common representation modeling with Graphs. Towards solving the

first challenge, our observation is that most real-world data de-

scribes relational knowledge among different entities, along with

their attributes and metadata such as spatial and temporal data.

Graph representation allows these structural and characteristic in-

formation to be stored and accessed efficiently [3], across multiple

modalities. Besides, deep learning-based dynamic graph embed-

ding methods [5, 22] learn low dimensional vector representations

for the graph while preserving both the graph properties and the

structure. Despite different naming and organization conventions

across various data sources, each data-sample still holds the re-

lationship properties among entities. This eliminates the issue of

heterogeneous property representations. For example, social net-

work recommendation engines (such as, Yelp [57], or Pinterest [16]),

or multi-media recommendation applications (such as, micro-video

recommendation in tiktok, Kwai, or MovieLens [69]) often use

graph representations.

Tensor-based similarity comparison. Our second observation is that

real-world information need often emphasizes implicit matching

(retrieval matching, entity-relation matching, or user-item match-

ing) [46] rather than just explicit matching. Since tensor is a geo-

metric object that describes relations between vectors and prior

works [58] have shown that neural tensor network (NTN) can ex-

plicitly model multiple interactions of relational data, we choose to

use an NTN-based framework to measure the similarity between

graph representations. The optimal number of interaction scores is

application-specific. For example, an application looking for person-

of-interests wants to soft-match a person with similar race, gender,

and clothes, whereas a missing person search would require to match

all human attributes for an exact match. The model would learn that

the multi-media samples from different modalities describing the

same entity would be in similar parts of the semantic space.

Weakly supervised learning for retrieval. Our third and final obser-

vation is, capturing how much change is needed to convert one

data-sample to another can provide us with a source of weak su-

pervision for cross-modal retrieval. We consider a data sample as a

collection of objects with certain properties along with the relation-

ships among them. Since graph edit distance (GED) has been shown

to be an effective graph distance metric in many applications, such

as graph similarity search [30, 79], graph classification [49, 50], im-

age indexing [72], etc., we modeled a data-sample similarity metric

based on GED. Since multi-media data is usually large in number,

it is expensive to annotate the relevance for each different system.

Prior works in retrieval system [1, 29, 36, 60] use inexact weak

supervision to tackle this issue of annotation expense.

Solution Sketch. We propose FemmIR, a framework that com-

pares data from different modalities and heterogeneous sources to

user-provided information need and calculates a similarity score

among them. Our framework involves three main components:

(1) Data Ingestion: a graph encoding mechanism that translates

properties from incoming data into an attributed graph repre-

sentation. In general, property names are considered as edge

labels, whereas values are used as node labels.

(2) Weak Label Generation: For capturing the similarity between

a pair of data samples, we define a new distance metric that
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indirectly holds the entity and relationship constraints between

the samples, Content Edit Distance (CED). CED captures the

amount of change needed to convert one attributed data graph

to another by including the object replacement cost for cost

matrix calculation in Munkres algorithm [51]. CED is later used

to define relevance label based on system requirements.

(3) Similarity Comparison: Finally, we train a lean-able embed-

ding function for multiplicative comparison between attributed

graphs using the SimGNN architecture [4]. During the training,

the objective function minimizes the difference between the

predicted score and the ground truth obtained from converting

the CED into a similarity score. During inference, the learned

embedding function calculates the similarity score between the

attributed graphs from the data-records.

Given a scenario where the user provides information need as an

example and incoming streams have identified properties, FemmIR

starts with building the attributed graphs. In case of unseen raw

data, FemmIR extracts the object properties either offline, or with

priority polling [64] for bulk streams in an additional property iden-

tification component. Second, the CEDs between the graphs are

calculated between the query example and the data samples. Fi-

nally, the model is trained to calculate the similarity score between

records.

Scope of our work. In this work, we only focus on retrieval cases

where either (1) properties from different objects and relationships

among them have been identified, or (2) the system has specified

its own identifiers for specific data modalities. Note that prior data-

matching approaches [24, 61] that employ retrieval model on high-

level properties assume there exists a common schema or feature

mapping among different modalities. In contrast, FemmIR is ag-

nostic to the design of the source-schema and can support any

type of property schema from any data source ranging from raw

data in data warehouse (Example 1.1) to a relational database in a

data lake (Example 1.2). FemmIR also delivers varying degrees of

relevance without the computational overhead. However, FemmIR

cannot handle multiple query examples at the same time for single

information need as it requires predicting user intent from those

examples [13] and that is not the focus of this work.

FemmIR requires knowledge of the application-specific prop-

erty identifiers to be used throughout the system. The choice of

property identifiers depends on the domain knowledge and the

properties-of-importance, e.g., in Example 1.1, Alex would require

identifiers for video and text which extracts human properties i.e.,

gender, race, cloths-worn, cloths-colors, etc. This assumption holds

because: (1) for object and action recognition tasks there exists

a well-known set of relevant identifiers for common modalities -

video [45, 80], text [8], image [25, 75], and 3D models [42] with rea-

sonable performance. Objects and actions cover the most common

properties in retrieval applications. (2) If the information need is

expressed through high-level properties [14, 56, 61], we can assume

the system already extracted properties from most modalities and

domain experts are typically aware of the likely class of properties

for the specific task at hand and can easily provide this additional

knowledge to the system.

Property Identifiers.While we use the property-identifier outputs to

find relevant data sources to the query example, developing identi-

fiers is orthogonal to our work. A number of object and action recog-

nition paradigms from different modalities exist in the literature.

FemmIR assumes access to a suite of property-identification tech-

niques and uses them to extract properties from the data. To support

a new data source, FemmIR needs to know the correspondingmodal-

ity and the properties-of-interest. We discuss some common classes

of property identifiers as representative ones, which are currently

supported in the implementation of FemmIR. We have selected

them based on the criteria of having semantically similar properties

or similar property definitions. For properties discovery in visual

modalities, we rely on prior work on action recognition [25, 80],

object detection [75, 78], etc. As part of FemmIR, we proposed a

novel property identification method for properties described in

textual modalities. Properties from the unstructured text are hard

to extract because of its multifaceted and individualistic character-

istics of it. Traditional natural language processing techniques for

entity and relation extraction fail for such entity-specific properties.

As a specific example, we proposed a method for extracting prop-

erties describing human attributes in textual modalities.While our

evaluation covers specific property identifiers, FemmIR is generic

and works for any class of identifiers, as long as the corresponding

properties are available.

Limitations of previous works. Correlation learning methods

[21, 40, 41, 44, 53, 65, 77] linearly or non-linearly projects low-level

features from representation models to a common subspace. Metric

learning methods [10, 68, 73] learn a distance function over data

objects based on a loss function to map them into the common sub-

space. All these models require a large amount of training data and

data representations lack a common encoding mechanism. FemmIR

closely relates to metric learning methods. Contrary to them, we do

not directly correlate class labels or weak labels to the loss function.

The proposed Edit distance between property graphs implicitly

captures the signal for relevance.

In contrast to common representation learning models, data

discovery models based on relational queries allows more flexibility

to consider explicit information need from users, and use high-level

properties in the system. EARS [61] is one such content-based data

discovery system that, similar to our approach, takes user examples

as queries and delivers relevant multi-media results. However, the

prime aspect of EARS is it assumes a schema mapping among all

modalities, and to introduce new modalities the common schema

needs to be updated. In contrast, FemmIR offers a general solution to

include retrieval from novel modalities for a diverse set of systems.

Contributions. In this paper, we make the following contributions:

• We design and develop a novel multi-modal information retrieval

approach to find multi-media data relevant to information need

expressed as Query-by-Example, or Query-by-Properties. The

approach leverages a neural-network based graph-matching tech-

nique to capture the interactions between information need and

the data properties, with a weak supervision from a novel dis-

tance metric for data samples. (Section 3)

• We propose a novel human attribute recognition model from

the unstructured text as part of the property identifiers. The
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model leverages pattern-matching techniques and contextual-

ized language models while exploiting the syntactic grammatical

properties to extract properties describing a person. (Section 4)

• We evaluate FemmIR on a real-world application for Missing

Persons, with an unannotated dataset and a property-specific

information need. We demonstrate that FemmIR shows similar

performance to other retrieval systems [61] while leveraging pre-

identified properties, on a novel multi-media dataset comprised

of pedestrian identification and real-world dataset.

Over a combination of real-world and synthetic datasets, we

further show the efficacy of the human attribute recognition

model. Moreover, we benchmark property identifiers for the

visual modalities to identify the best model for the downstream

retrieval task. (Section 5)

2 PRELIMINARIES & PROBLEM DEFINITION

In this section, we first provide formal definition to attributed rela-

tional graph, wordnet synsets, and natural language inference. We

then proceed to formulate the problem of multi-modal information

retrieval for property-specific information need, and the problem

of property identification from text.

Definition 2.1 (Attributed relational graph). An attributed rela-

tional graph (ARG) is a graph whose nodes and edges have assigned

attributes (single values or vectors of values from Σ). For the sake of
simplicity, from now on we denote the node and edge attributes by

labels, as labels are specific type of attributes. Although we focus

our methodology only on directed and labeled graphs, it is designed

to handle any forms of graphs. It is defined as: 𝑔 = (𝑁, 𝐸, 𝑙) where
(1) 𝑁 is the finite set of nodes, (2) 𝐸 ⊆ 𝑁 × 𝑁 is the set of edges,

(3) 𝑙 : 𝑁 (𝑔) ∪ 𝐸 (𝑔) → Σ is a labelling function that assigns each

vertex and/or edge a label from Σ. Specifically, 𝑙 (𝑢) and 𝑙 (𝑢,𝑢′) are
the label of node 𝑢 and the label of edge (𝑢,𝑢′), respectively, (4) Σ
is a finite or infinite set of unconstrained labels. 𝐴 ∈ Σ represents

labels enumerating the node-type.

Definition 2.2 (Wordnet Synsets). Wordnet[11] is a lexical knowl-

edge base where words are organized in a hypernym tree based on

their origin. Words are grouped into Synsets based on their syn-

onyms. Wu-Palmer distance calculates the similarity between word

meanings based on how similar the word senses are and where the

Synsets occur relative to each other in the hypernym tree. Given

the synsets of two strings 𝑠𝑡1 and 𝑠𝑡2 , and the LCS (Least Common

Subsumer) between them, the Wu-Palmer distance is:

𝑤𝑝𝑑𝑖𝑠𝑡 (𝑠𝑡1 , 𝑠𝑡2 ) = 2 ∗
𝑑𝑒𝑝𝑡ℎ(𝑙𝑐𝑠 (𝑠𝑡1 , 𝑠𝑡2 ))

𝑑𝑒𝑝𝑡ℎ(𝑠𝑡1 ) + 𝑑𝑒𝑝𝑡ℎ(𝑠𝑡2 )
(1)

Definition 2.3 (Natural Language Inference). Given a hypothesis

ℎ and a premise 𝑝 , Natural language inference (NLI) is the task

of determining the probability 𝑃𝑟 of the hypothesis being true

(entailment 𝐸), false (contradiction 𝐶) or undetermined (neutral 𝑁 ).

NLI determines the best label 𝑙 :

arg max

𝑙∈{𝐸,𝐶,𝑁 }
𝑃𝑟 (𝑙 |ℎ, 𝑝)

2.1 Problem Definition

Considering a collection of data fromM ∈ Z+modalities, we denote

the 𝑗-th sample of the 𝑖-th modality as d𝑖
𝑗
. The set containing all

the 𝑛𝑖 ∈ Z0+ samples of the 𝑖-th modality is denoted as D𝑖 =

{d𝑖
1
, d𝑖

2
, . . . , d𝑖𝑛𝑖 }. Each data sample contains a collection of object-

properties. For example, a document has a topic, metadata, and

entities with their relationships, along with any event it describes.

Let O = {o1, o2, . . . , o𝑙 } be the set of all such object-properties,

where 𝑧𝑟 is the set of values of property o𝑟 . A data sample d𝑖
𝑗
is

described with a subset of O. O𝐸 ⊆ O denotes the set of object-

properties describing an entity 𝐸. 𝑧𝑟 = {𝜙} indicates that o𝑟 is not
present in d𝑖

𝑗
. Property identifiers implement a relation, PROP (d𝑖

𝑗
)

⊂ O that maps a data-sample to a set of object-properties (PROP :

D → O). A query is issued against a corpus withM-modalities,

D = {D1,D2, . . . ,DM }.
Problem 2.1 (Multimodal Information Retrieval). 𝑄d𝑚∈M=

{o1 = 𝑧1, o2 = 𝑧2, . . . , o𝑝 = 𝑧𝑝 } is a data query that is expressed in

one of the two ways: (1) (Query-by-Properties) with 𝑝 object-properties

mentioning a target data-sample d𝑚𝑞 frommodality𝑚 with PROP (d𝑚𝑞 )

= 𝑄d𝑚∈M , or (2) (Query-by-Example) with an example data-sample

(d𝑚𝑞 ) of modality𝑚 with PROP (d𝑚𝑞 ) = 𝑄d𝑚∈M . The task is to retrieve

a ranked list, 𝑅 = (d𝑥1
1
, d𝑥2

2
, . . . d𝑥𝑡𝑡 ) of 𝑡 ∈ N0 data-samples from all

available modalities in the system satisfying PROP (d𝑚𝑞 ), where d𝑥𝑐𝑐 is

𝑐-th data in 𝑅 from modality 𝑥𝑐 ∈𝑅 M.

Relevance is scored based on the degree of common object-

properties between the data-object d𝑥𝑐𝑐 in the ranked list, and the

query data d𝑚𝑞 , PROP (d𝑚𝑞 ) ∩ PROP (d𝑥𝑐𝑐 ). A similarity score is used

to define the degree of relevance, 0 ≤ 𝑆𝐼𝑀 (d𝑥𝑐𝑐 , d𝑚𝑞 ) ≤ 1. Similarity

score of 0 indicates non-relevance, whereas a score of 1 indicates

complete relevance and a proper subset, PROP (d𝑚𝑞 ) ⊂ PROP (d𝑥𝑐𝑐 ).

Our problem setting assumes that the user has knowledge about

𝑜𝑝 and their corresponding 𝑧𝑝 for Query-by-Properties. This as-

sumption is realistic in real-world scenarios and has been consid-

ered in multimodal data query literature where properties are used

to express the information need [14, 56, 61].

2.1.1 Property Identification from Unstructured Text. Specifically,
we explore the problem of identifying properties describing humans

from unstructured text. As discussed in SurvQ [64], a finite number

of object properties such as, gender, race, build, height, clothes,

etc. are used in profiling a person-of-interest to search for them.

We denote object-properties used in person profiling as O𝐻 .

Example 2.4. The sentence “a white male with medium build
was seen in Vernon St., wearing white jeans and blue
shirt” describes object-properties of a †person: (1) gender = male,
(2) race = white, (3) build = medium, (4) ∗clothes = {jeans,
shirt}, (5) upper-wear-color= {white}, (6) bottom-wear-color

= {blue}, and (7) relation = {wearing, †Person, ∗Clothes}.

Problem 2.2 (Human Attribute Recognition from Text).

Given a large text 𝑇 with 𝑇𝑠 sentences, each with |𝑤 | tokens, the
problem of human attribute recognition from 𝑇 is to (1) identify the

set of sentences𝐶𝑠 ⊂ 𝑇𝑠 that describes properties of a person, (2) expose
the set of object-properties O𝐻 from𝐶𝑠 and (3) extract the set of values

𝑧𝑝 of the identified properties o𝑝 .

Our problem setting assumes that the set of key-phrases (𝑄𝐻 )

often used in sentences describing properties of a person are either

known (provided by domain experts), or a small amount of anno-

tated documents are provided to identify𝑄𝐻 manually. In Example
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2.4, 𝑄𝐻 = {wearing}. The first assumption is derived from litera-

ture in pedestrian attribute recognition from visual and textual

modalities, and the second assumption holds as small amount of

curated data is always available for a problem setting. Note that,

(𝑄𝐻 ∩ O𝐻 ) ≠ {𝜙}. Candidate sentences are sentences in the

text that mentions phrases similar to the key-phrases within an

empirical threshold value.

Definition 2.5 (Candidate Sentences). Given a collection of sen-

tences 𝑇𝑠 , key-phrase for describing an object in text 𝑞𝐻 ⊂ 𝑄𝐻 ,

and an empirical threshold 𝜃𝐻 , Candidate sentence is

𝐶𝑠 = {𝑠 : 𝑠 ∈ 𝑇𝑠 , 𝑞𝐻 ∈ 𝑄𝐻 | 𝑆𝐼𝑀 (𝑞𝐻 , 𝑠) > 𝜃𝐻 } (2)

3 MULTIMODAL INFORMATION RETRIEVAL

We will now describe the multimodal similarity matching method

to find the relevant data to user provided information need (men-

tioned with an example, or with object properties). The matching

algorithm considers the data samples, d𝑥𝑐𝑐 (from the data repository,

or from data streams) and user provided example, d𝑚𝑞 as input and

outputs the similarity score between them: 𝑆𝐼𝑀 (d𝑥𝑐𝑐 , d𝑚𝑞 ). The cor-

responding object-properties are assumed to be available from each

data sample extracted by the system-specific property identifiers

before the matching algorithm is applied. We propose a weakly

supervised approach to rank the data samples by generating a dis-

tance metric between them based on the amount of edits (changes)

needed to convert the properties of one sample to another instead

of manually annotating the number of matched object-properties.

To this end, we first process the input data samples with a graph

ingestion mechanism which converts the extracted properties into

a hierarchical attributed relational graph (HARG). Our weakly su-

pervised strategy, FemmIR adopted the Munkers’ algorithm [51] to

calculate the edit distance between the data samples. Finally, we

used a neural network based edit distance approximation algorithm

to learn a function to map the graph embedding of the HARGs to a

similarity score between the data samples. During inference, the

model just takes the extracted properties from the data samples,

and outputs the similarity score by using the mapping functions.

We start with an example scenario to demonstrate how data inges-

tion works and then proceed to describe the weakly supervised

approach.

3.1 Data Ingestion with Graphs

Consider the task of finding the location of a person from large

amount of video data using the text queries or reports (Example

1.1). The system finds the video feeds that has the persons similar

to the report description (using multi-modal similarity matching)

by focusing on object-properties of persons in the video and text.

The goal is to identify the similarity score between video feeds, text

queries, and incident reports which can be used to deliver a ranked

list of relevant data samples to the user.

Observations. We make the following observations.

O3.1 The number of object-properties that is used to compare

between two data samples are finite, and the value of the

properties are mostly categorical values. A data sample can

describe a large amount of objects and object-properties, but

Figure 1: HARG and Weak Label Generation; Left side graph

refers to 𝑔𝑞 , and the right side graph refers to 𝑔𝑐 . Node-type

labels are as follows. V: EPL Vertex, R: Root, P: Person, C:

Clothes, T: Type, M: Motor-Vehicles. Squared nodes corre-

spond to the non-empty leaf nodes.

for system-specific similarity comparison an user is only

interested in a finite number of properties.

O3.2 Data samples are objects themselves that have different prop-

erties such as, metadata, topics, and events that they describe.

Entities are specific types of objects described in a data sample

which has its own properties.

O3.3 Relationships between objects are a specific types of object-

properties which belong to all participating objects. The set of

values corresponding to the objects would be complementary

to each other. Value for relation-name can be different for

the same relationship through different data samples. For

example, different text would describe the same action in

different forms: wearing, wear, has.

O3.4 Some properties in 𝑧𝑝 have single and fixed value-set i.e.,

gender, race, height, while other properties have a multiple

number of values in their value-set i.e., clothes.

O3.5 Some object-properties such as, clothes-color have differ-

ent values for different data samples. For example, in Fig-

ure 1, UPPER-WEAR-COLOR,SHIRT-COLOR,COLOR all refer to

the color of clothes.

Our intuition here is that entities, relationships, and object-

properties in a data sample have a inter-connected structure and

if we can capture the changes we need to make to this structure

to convert it to structure of another data-sample, then we can cap-

ture the differences between these samples. Based on this intuition,

FemmIR starts by constructing a hierarchical attributed relational

graph, called (HARG), with a common hierarchy for all data sam-

ples. The choice of graph as a representation was influenced by:

(1) graph being the best data structure to capture information from

connected structures, (2) based on observations O3.3 and O3.5, a

data structure with representation-invariant encoding mechanisms

that can capture the syntactic similarities between different values

was necessary.

Definition 3.1 (Hierarchical Attributed Relational Graph). HARG is

a specific type of ARG in the form of a multi-level tree with |ℎ |
levels. It consists of a root node, multiple levels of nodes and edges

emanating from it, and specific type of leaf nodes. Nodes at level ℎ

is denoted by 𝑁ℎ
.
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CONSTRUCT-HARG. Each data sample is represented as HARG,

following the steps:

(1) The graph starts with a single node at level 0 (ℎ = 0) containing
a common-label (content/ object/ root) for all data samples

in the same application domain: 𝑙 (𝑁 0) = {𝑅𝑂𝑂𝑇 } .
(2) Level 1 nodes constitute of the object-properties of the data

sample itself where the property-name is the edge label, and the

property-value is the node label: 𝑙 (𝑁 0, 𝑁 1) = o𝑝 , 𝑙 (𝑁 1) = 𝑧𝑝 .

With the exception of 𝑜𝑝 being an entity of that data sample,

𝑁 1
would be a leaf node. And for entities, we define the edge

label as 𝑙 (𝑁 0, 𝑁 1) = {ℎ𝑎𝑠𝐸𝑛𝑡𝑖𝑡𝑦}.
(3) In case a set of o𝑝 describes the object-properties of an entity,

𝑁𝑘 (𝑘 ≥ 1) will be a pointer to the properties of that entity,

whereas 𝑙 (𝑁𝑘 ) = {entity-type}. We categorize entities in two

groups for each data sample: primary, and secondary. Level 1 of

HARG only contains primary entities.

(4) Level 2 and subsequent levels contain the property-values of

the entities in the previous level with 𝑙 (𝑁𝑘 , 𝑁𝑘+1) = o𝑝 (𝑘 ≥ 1)
and 𝑙 (𝑁𝑘 ) = 𝑧𝑝 (𝑘 ≥ 2). From Definition 3.3, for relation

properties, ⟨𝑅, 𝑆,𝐴𝑟𝑔⟩ where entity-pointer 𝑆 is at level-𝑘 and

entity-pointer 𝐴𝑟𝑔 is at level-(𝑘 + 1), 𝑙 (𝑁𝑘 , 𝑁𝑘+1) = 𝑅, 𝑙 (𝑁𝑘 ) =
𝑆, 𝑙 (𝑁𝑘+1) = 𝐴𝑟𝑔.

(5) There can be edges between entities in the same level with

relation properties, 𝑅. With nodes 𝑁𝑘
and 𝑁 𝑟

,

𝑙 (𝑁𝑘 , 𝑁 𝑟 ) = 𝑅, where 𝑙 (𝑁𝑘 ) ≠ 𝑙 (𝑁 𝑟 ) but 𝑘 = 𝑟 .

(6) The leaf nodes of HARG always contain a property-value or a

NULL value for 𝑧𝑝 = {𝜙}.

Definition 3.2 (Primary Entities). Primary entities are entities that

take the role of a subject in terms of a verb. (1) In visual modalities,

entities that control the action or relation properties are considered

as primary entities. (2) Entities that satisfy any of the following

criteria is considered as primary entities in textual modalities: (a) In

phase structure grammars, primary entity is an immediate depen-

dent of the root node [52], (b) In dependency grammars, primary

entity is an immediate dependent of the finite verb [37]. (3) For

database records, we consider the entities from the tables with no

foreign key constraints as the primary entity. Secondary entities in-

clude any entities not satisfying the conditions of primary entities

including objects, verb arguments, and themes.

Definition 3.3 (Relation between Objects). Object-properties de-

scribing a relationship or action 𝑅 between two entities 𝑆 (initiator)

and𝐴𝑟𝑔 (outcome/ receiver/ modifier) are defined as relation prop-

erties, and the property-value is defined as a triplet of ⟨𝑅, 𝑆,𝐴𝑟𝑔⟩.
For a 𝑛-ary relationship 𝑅, identifiers associate each action with

multiple entity arguments,𝐴𝑟𝑔1,𝐴𝑟𝑔2, . . . ,𝐴𝑟𝑔𝑖 , . . . ,𝐴𝑟𝑔𝑛 with role

𝑅𝑖𝑜 .𝑛-ary relationships are broken intomultiple binary relationships

with 𝑙 (𝑁𝑘 , 𝑁𝑘+1) = {𝑅 : 𝑅𝑖𝑜 }, 𝑙 (𝑁𝑘 ) = 𝑆, 𝑙 (𝑁𝑘+1) = {𝐴𝑟𝑔𝑖 }.

Figure 1 demonstrates two example hierarchical attributed re-

lational graphs from the experimental dataset. 𝑅1 and 𝑅2 refers to

two different data samples. For the leaf nodes 𝑇2, 𝑀1, and 𝑇3 in

𝑅2, 𝑧𝑝 = {𝜙}. Wear, and riding refers to the Relation property,

where Persons are subjects, and Clothes and Motor-vehicles are
arguments. We made two assumptions for the generation process:

(I) We assume prior knowledge of the system-specific properties [ ]

and that they have been extracted with appropriate property-iden-

tifiers, (II) The entity types for node labels are system-specific, and

must be consistent through lifetime of the system. This assumption

is valid since the property identifiers from each modality would

be system-specific and extracted object types would be consistent

across data samples.

3.2 Weak Label Generation

FemmIR further defines a new distance metric, Content Edit Dis-

tance (CED) using a variation of the Munkres’ algorithm [51] to

calculate the amount of edits (changes) for optimal alignment of

the query-example HARG to HARG of another data-sample. CED is

considered as weak label for the retrieval task for two reasons:

(1) Munkres’ algorithm is suboptimal as it only calculates approx-

imate edit distance values, (2) the quality of HARG rely on the

choice of primary entity selection which can be noisy. Our intuition

was graph edit distance (GED) calculation algorithms (A*-search, VJ,

or Beam) would be enough to calculate the number of changes after

we have build the HARGs, but we made following observations.

O3.6 Different nodes and edges in HARG have different change

cost. User should be allowed to specify individual property

replacement cost.

O3.7 GED calculation algorithms differ in speed based on the num-

ber on nodes and HARG contains variable sized graphs.

O3.8 Object-properties such as, relation has dependency between

different levels of HARG and should not be considered in-

dividually during the change estimation. For example, for

person wearing clothes, edit cost for person and cloth should
be considered together between different data-samples.

O3.9 ConsideringO3.4, we cannot calculate the edit cost of certain

properties just by replacing or deleting them since they have

multiple number of values in their value-set.

For properties with list values, we consider two types of compar-

ison: (prop-LED) ordered comparison with modified Levenshtein

distance, and (hash-cmp) unordered comparison with hash table.

Summing the cost of edits for all the properties between two data-

samples ignores the inter-connected structure among the properties.

In Figure 1, the graph from 𝑅2 has two persons, and while com-

paring with 𝑅1 we would want to know the minimal edit cost by

considering which person in 𝑅2 is closer to the person described in

𝑅1. Content Edit Distance calculates the cost for the minimal

cost alignment of one data-sample to another. Since only property

values in leaf nodes in a HARG have direct replacement cost, we

propose a new kind of vertex in HARG, Entity-with-Property-in-Leaf

(EPL) vertex (Definition 3.4) for calculating the cost for an individual

object assignment. Given 𝐸𝑃𝐿(𝑉 ) is the finite set of EPL Vertices,

𝐸𝑃𝐿(𝐸) ⊆ 𝐸𝑃𝐿(𝑉 ) × 𝐸𝑃𝐿(𝑉 ) is the set of edges, and 𝐸𝑃𝐿(𝑙) ⊂ 𝑙 is

the labeling function, a HARG is now defined as:

𝑔
epl

= (𝐸𝑃𝐿(𝑉 ), 𝐸𝑃𝐿(𝐸), 𝐸𝑃𝐿(𝑙))

Definition 3.4 (Entity-with-Property-in-Leaf Vertices). A node la-

beled with object-type (𝐴) with their outgoing edges labeled with

object-properties (o𝑝 ) and the connected leaf nodes labeled with

property-values (𝑧𝑝 ) are considered as Entity-with-Property-in-

Leaf (EPL) Vertex, 𝐸𝑃𝐿(𝑉 ). A node without any leaf nodes is also

considered as an EPL vertex. An EPL vertex can be connected to

other EPL vertices and have their own cost functions.
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Munkres Algorithm for CED calculation.We consider the CED

calculation as an assignment problem and adopted the bipartite

graph matching method in [51]. Compared to the exponential time-

complexity of A*-search, Munkres’ [51] algorithm has a polyno-

mial time complexity. Estimating content edit distance instead of

a simple property-to-property comparison allows the flexibility

to consider the dependency between properties and graph lev-

els. Given the non-empty HAR graph from query-example, 𝑔
𝑞

epl
=

(𝐸𝑃𝐿(𝑉 )𝑞, 𝐸𝑃𝐿(𝐸)𝑞, 𝐸𝑃𝐿(𝑙)𝑞) and the HAR graph from the com-

pared data-sample, 𝑔𝑐
epl

= (𝐸𝑃𝐿(𝑉 )𝑐 , 𝐸𝑃𝐿(𝐸)𝑐 , 𝐸𝑃𝐿(𝑙)𝑐 ), where
𝐸𝑃𝐿(𝑉 )𝑞 = {𝑢1, . . . , 𝑢𝑛}, 𝐸𝑃𝐿(𝑉 )𝑐 = {𝑣1, . . . , 𝑣𝑚}, the Munkres’

algorithm would output CED (𝑔
𝑞

epl
, 𝑔𝑐

epl
). We made the following

adjustments to the Munkres’ algorithm in [51].

(1) EPL-vertices in the query graph needs to be aligned to the data-

samples, hence we will fix the assignment size 𝑘 to |𝐸𝑃𝐿(𝑉 )𝑞 |.
(2) For data retrieval, the entities and relations in query graph

needs to be in comparison-graph, otherwise indicates missing

property. So there is no need to add dummy nodes to 𝑔
𝑞

epl
. For-

mally, if 𝑛 > 𝑚, only the costs for𝑚𝑎𝑥{0,𝑚−𝑛} node insertions
have to be added to the minimum-cost node assignment.

(3) Next, the 𝑛 ×𝑚 cost-matrix 𝐶 is generated. (1) For different

type of objects 𝐴 in 𝑢𝑖 and 𝑣 𝑗 the replacement cost is set to∞.
(2) The cost for a single object assignment 𝐶𝑖, 𝑗 is calculated

by comparing the property values 𝑧𝑝 (normal-comparison and

list-comparison) in EPL-vertex 𝑢𝑖 and 𝑣 𝑗 .

(4) To accommodate for O3.5, while applying Adjacency-Munkre

s, we set the default cost of an edge replacement 𝑐 (𝑒𝑢𝑖 → 𝑒𝑣𝑗 )
based on the Wu-Palmer distance between Synsets of 𝑙 (𝑒𝑢𝑖 ) and
𝑙 (𝑒𝑣𝑗 ). 𝑒𝑢𝑖 denotes all edges connected to 𝑢𝑖 and 𝑒𝑣𝑗 denotes all

edges connected to 𝑣 𝑗 . In general, any language embedding can

be used instead of Synsets.

𝑐 (𝑒𝑢𝑖 → 𝑒𝑣𝑗 ) = 1/𝑤𝑝𝑑𝑖𝑠𝑡 (𝑠𝑙 (𝑒𝑢𝑖 ) , 𝑠𝑙 (𝑒𝑣𝑗 ) ) (3)

Cumulative-Munkres. Using Adjacency-Munkres from [51] al-

lows us to find the optimal assignment of each EPL vertex without

taking into account the dependency among them O3.8. We utilize

the levels from HARG to include the dependency information into

the cost-matrix. So for every𝐶𝑖, 𝑗 in the cost matrix from adjacency-

munkres denoting an assignment of 𝑢𝑖 to 𝑣 𝑗 , we add their parent

EPL-vertices assignment cost to 𝐶𝑖, 𝑗 , starting from EPL-vertices

in level-1. In the remainder of this paper, we will call this method

Cumulative-Munkres since it uses the cumulative cost of the

parent and child nodes to preserve the dependency information.

3.3 Similarity Measurement

Finally, we propose to use an end-to-end neural network model,

SimGNN [4] to learn an embedding function to map 𝑑𝑞 and 𝑑𝑐 into

a similarity score based on the CED score. User requirements (such

as, relationships between properties, searching in a time range,

or within a specified location, etc.) and system constraints (such

as, different property-values) are applied with appropriate replace-

ment costs while calculating CED. Similarity scores for training

the model are derived by transforming the distance scores using

the normalization method from [43] and an exponential function

on the normalized score. (Line 25 in Algorithm 1). The embedding

function outputs a number of interaction scores between a pair of

graphs using Neural Tensor Networks (NTN) [59] on the graph

embeddings. For calculating the graph embedding, first, Graph Con-

volutional Networks (GCN) [23] are used on the HARG to obtain

the node embeddings. GCN is representation-invariant and allows

us to account for different kinds of labels for nodes and edges, when

ground truths are available. It is also inductive and allows to com-

pute the node embedding for any unseen graph following the GCN

operation, which makes it a great choice for variable sized FemmIR

graphs. Then, an attention network is used to combine the node

embeddings into a graph embedding allowing to learn each node’s

weight in the similarity determination as part of the end-to-end

network. In addition, SimGNN augments the graph level interac-

tion score with local information by calculating histogram features

from a pairwise node interaction score between the node embed-

dings. Finally, a multi-layer fully connected network is applied to

learn a single similarity score from the interaction scores, which

is compared against the similarities from the weak-labels or the

ground-truths using mean squared error loss.

𝐶 =
1

|𝐷 |
∑︁
𝑑𝑐 ∈𝐷

(𝑠 − 𝑠 (𝑑𝑞, 𝑑𝑐 ))2 (4)

where D is the set of data samples from the repository or the stream,

𝑠 is the predicted similarity score, and 𝑠 (𝑑𝑞, 𝑑𝑐 ) is the ground-truth
similarity between 𝑑𝑞 and 𝑑𝑐 . This similarity score allows us to rank

the data samples against the query example.

3.4 FemmIR algorithm

Algorithm 1 presents the pseudocode of our retrieval algorithm

FemmIR which takes two data samples as input and returns the

similarity score between them as output.

Line 1 Extract the set of properties and their values, O 𝑗
from data-

sample 𝑑 𝑗 using the modality-specific property-identifiers.

Lines 2 - 3 Construct the Hierarchical Attributed Relational Graphs

using the identified properties following the steps in Section 3.1.

Lines 4 - 25 During training, generate the CED as weak label us-

ing the Munkres algorithm. CED is used to calculate the similarity

score, and this pair of data-samples and the similarity score is added

as training sample for SIMGNN.

Line 5 Discover the EPL-vertices in the HARGs, and define 𝑔
epl

.

Line 6 Initialize an empty 𝑛 ×𝑚 cost-matrix C.
Lines 7 - 8 Iterate through all the vertices in 𝐸𝑃𝐿(𝑉 )𝑞 and 𝐸𝑃𝐿(𝑉 )𝑐
and compare the properties in each vertex to assign the costs.

Line 9 For different types of object, set the cost to∞, not allowing
different types of object to be aligned.

Line 11 If a property in 𝑢𝑖 is absent in 𝑣 𝑗 , it needs to be inserted in

𝑣 𝑗 . Increment the cost-matrix value by the insertion-cost.

Lines 12 - 15 If the property is not a list, then just compare the

values in 𝑢𝑖 and 𝑣 𝑗 . If they mismatch, add the replacement cost to

the cost-matrix, otherwise nothing is added.

Lines 16 - 17 If the property is a list, we need to compare them

either with a Levenshtein distance (ordered comparison) or with a

hashmap (unordered comparison) from Section 3.2. cmp is a control
variable to specify what kind of comparison is required. The overall

cost is added to cost-matrix.
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Algorithm 1: FemmIR

Input: Query example and a single Data sample, 𝑑𝑞 and 𝑑𝑐
Output: Similarity score between 𝑑𝑞 and 𝑑𝑐 , SIM (𝑑𝑞, 𝑑𝑐 )

Given: (1) Replacement cost for property o𝑝 , rcost(o𝑝)
(2) Insertion cost for property o𝑝 , icost(o𝑝)

1 O𝑞 ← 𝑃𝑅𝑂𝑃 (𝑑𝑞), O𝑐 ← 𝑃𝑅𝑂𝑃 (𝑑𝑐 )
2 𝑔𝑞 ← 𝐶𝑂𝑁𝑆𝑇𝑅𝑈𝐶𝑇 − 𝐻𝐴𝑅𝐺 (O𝑞)
3 𝑔𝑐 ← 𝐶𝑂𝑁𝑆𝑇𝑅𝑈𝐶𝑇 − 𝐻𝐴𝑅𝐺 (O𝑐 )
4 if training then

5 𝑔
𝑞

epl
, 𝑔𝑐

epl
← 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅 − 𝐸𝑃𝐿𝑉 (𝑔𝑞, 𝑔𝑐 )

6 C← 𝜙

7 foreach 𝑢𝑖 ∈ 𝐸𝑃𝐿(𝑉 )𝑞 do

8 foreach 𝑣 𝑗 ∈ 𝐸𝑃𝐿(𝑉 )𝑐 do
9 if TYPE (𝑢𝑖 ) ≠ TYPE (𝑣 𝑗 ) then C𝑖, 𝑗 =∞

10 foreach o𝑝 ∈ 𝑢𝑖 do
11 if o𝑝 ∉ 𝑣 𝑗 then C𝑖, 𝑗 += icost(o𝑝)
12 else if TYPE (𝑧𝑝 ) is not list then

/* 𝑧𝑝 (𝑢𝑖 ) is value of o𝑝 in vertex 𝑢𝑖 */

13 if 𝑧𝑝 (𝑢𝑖 ) ≠ 𝑧𝑝 (𝑣 𝑗 ) then
14 C𝑖, 𝑗 += rcost(o𝑝)
15 else C𝑖, 𝑗 += 0

16 else

17 C𝑖, 𝑗 += {cmp ∗prop-LED(𝑧𝑝 (𝑢𝑖 ), 𝑧𝑝 (𝑣 𝑗 ))
+ (1 - cmp)∗hash-cmp(𝑧𝑝 (𝑢𝑖 ), 𝑧𝑝 (𝑣 𝑗 )) }

18 C𝑖, 𝑗 = C𝑖, 𝑗 +𝑚𝑖𝑛{∑ 𝑐 (𝑒𝑢𝑖 → 𝑒𝑣𝑗 )}
19 if mType then
20 foreach 𝑢𝑖 ∈ 𝐸𝑃𝐿(𝑉 )𝑞 do

21 foreach 𝑣 𝑗 ∈ 𝐸𝑃𝐿(𝑉 )𝑐 do
22 𝑢𝑖 = 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑢𝑖 ), 𝑣 𝑗 = 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑣 𝑗 )
23 𝐶𝑖, 𝑗 = 𝐶𝑖, 𝑗 +𝐶𝑖, 𝑗
24 CED ( 𝑔𝑞, 𝑔𝑐 ) = Munkres-Algorithm (C)

25 nCED =
CED( 𝑔𝑞 ,𝑔𝑐 )
( |𝑔𝑞 |+|𝑔𝑐 | )/2 , SIM (𝑑𝑞, 𝑑𝑐 ) = 𝑒−𝑛CED

26 else

27 SIM (𝑑𝑞, 𝑑𝑐 ) = SIMGNN ( 𝑔𝑞, 𝑔𝑐 )

Line 18 For applying Adjacency-Munkres, the minimum edge re-

placement cost is added to the cost matrix using Equation 3.

Lines 19 - 23 If Cumulative-Munkres is required (set by mType),
cost-matrix entry of the parent vertices are added to each 𝐶𝑖, 𝑗 .

Line 24 Apply the Munkres algorithm to calculate the optimal

assignment based on C, and the associated cost is the CED.
Line 25 Normalize CED to the graph sizes, and apply an exponen-

tial function to convert it to a similarity score in the range of (0, 1].

Lines 26 - 27 If in testing phase, apply the learned mapping func-

tion, SIMGNN to predict the similarity score from the HARGs.

Generalization. (1) Algorithm 1 assumes that the edge labels for

level 0 is fixed to ℎ𝑎𝑠𝐸𝑛𝑡𝑖𝑡𝑦 and𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎 with granularity (such as,

𝑡𝑖𝑚𝑒, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, etc.). These are flexible and can be set to any labels

in FemmIR as long as it is consistent throughout the lifetime of

the system. (2) Object-types are assumed to be system-specific, and

can be variable across different systems and applications. FemmIR

can handle any labels for entity-type since the retrieval result does

not depend on it. The comparison between properties are affected

by it which remains valid as long as same heuristics is maintained

for all modalities in a system. (3) FemmIR is capable of handling

different replacement costs and insertion costs for properties in

different application domains. (4) For the edge replacement cost,

any language embedding will work as long as the objective function

places semantically similar tokens closer to each other.

4 HUMAN ATTRIBUTE RECOGNITION FROM

UNSTRUCTURED TEXT (HART)

We now describe the property identification technique for unstruc-

tured texts to extract attribute-based properties from large text doc-

uments. Our algorithm considers the full document as input and

reports a collection of object-properties and their set of values, as

output. To this end, we first identify the candidate sentences 𝐶𝑠
from a collection of sentences 𝑇𝑠 by searching for the key-phrases

(𝑞𝐻 ) using pre-trained language representation models and lexical

knowledge bases. Then, we propose individual property-focused

models to extract the attributes and their corresponding values

using the syntactic characteristics (i.e., parts-of-speech) and lexical

meanings of the tokens in the Candidate Sentences. Our heuristic

search algorithm, POSID iteratively checks the tokens in the candi-

date sentences and based on the assigned tags in accordance with

their syntactic functions identifies the properties in O𝐻 and their

values.

4.1 Candidate Sentence Extraction

A naive approach to this task would be to consider it as a supervised

classification problem given enough training data. Since during this

work, the primary goal was to define on-demand models that works

in absence of training data, we designed this as a similarity search

problem using pre-trained and lexical features, where the similar-

ity between sentence and key-phrase needs to reach an empirical

threshold. We now proceed to describe the different methods used

to identify 𝐶𝑠 .

Pattern Matching. As a baseline heuristic model, we imple-

mented the Regular Expression (RE) Search on 𝑇𝑠 . Since we

consider all sentences in the document as input corpus, if it de-

scribes multiple persons, this model captures all of the sentences

describing a person as 𝐶𝑠 . Individual mentions are differentiated in

later stages. For RE, 𝑆𝐼𝑀 (𝑞𝐻 , 𝑠) ∈ {0, 1}. Given the key-phrase 𝑞𝐻 ,

the RE pattern searches for any sentence mentioning it:

[^]*𝑞𝐻 [^.]+

Similarity using Tokens. Similarity between 𝑞𝐻 and 𝑠 is cal-

culated based on the similarities between tokens𝑤 ∈ 𝑠 and 𝑞𝐻 . A

single model is used to embed both𝑤 and 𝑞𝐻 into the same space.

We used two different token representation models.

𝑆𝐼𝑀 (𝑞𝐻 , 𝑠) = max

𝑤∈𝑠
𝑆𝐼𝑀 (𝑞𝐻 ,𝑤) (5)

(a)Word Embedding. Tokens in each sentence and in the key-

phrase are represented byWord2Vec [35] embeddings. If there

are multiple tokens in a key-phrase, the average of the embeddings

are used. We use cosine similarity as the distance metric. Given
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𝑢𝑞𝐻 and 𝑢𝑤 are the final embedding vectors for 𝑞 and𝑤 ,

𝑆𝐼𝑀 (𝑞𝐻 ,𝑤) = 𝑐𝑜𝑠 (𝑢𝑞𝐻 , 𝑢𝑤) =
𝑢𝑞𝐻 · 𝑢𝑤
∥𝑢𝑞𝐻 ∥ · ∥𝑢𝑤 ∥

(6)

(b)Word Synsets. Tokens and key-phrases are represented by
Wordnet [11] synsets in NOUN form. For similarity/distancemetric,

we used the Wu-Palmer similarity [71]. Given the synsets of 𝑞 and

𝑤 are 𝑠𝑞𝐻 and 𝑠𝑤 ,

𝑆𝐼𝑀 (𝑞𝐻 ,𝑤) = 𝑤𝑝𝑑𝑖𝑠𝑡 (𝑠𝑞𝐻 , 𝑠𝑤) (7)

Classification Model. The similarity search problem is re-desig

ned as a classification problem where the sentences are considered

as input sequence, and the key-phrases are considered as labels.

Probability of sequence 𝑠 belonging to a class 𝑞𝐻 is then consid-

ered as the similarity between a sentence and a key-phrase. To that

end, following Yin et al. [74], we used pre-trained natural language

inference (NLI) models as a ready-made zero-shot sequence clas-

sifier. The input sequences are considered as the NLI premise and

a hypothesis is constructed from each key-phrase. For example, if

a key-phrase is clothes, we construct a hypothesis "This text is

about clothes". The probabilities for entailment and contradiction are

then converted to class label probabilities. Then, both the sequence

and the hypothesis containing the class label are encoded using a

sentence level encoder Sentence-BERT [54] (SBert). Finally, we

use the NLI model to calculate the probability 𝑃 . Given SBERT

embedding of a sequence 𝑠 is denoted with 𝐵𝑠 ,

𝑆𝐼𝑀 (𝑞𝐻 , 𝑠) = 𝑃 (𝑠 is about 𝑞𝐻 | 𝐵𝑠 , 𝐵𝑞𝐻 ) (8)

StackedModels. WhileRE search relies on specific patterns and

returns exact matches, the other models calculate a soft similarity,

0 ≤ 𝑆𝐼𝑀 (𝑞𝐻 , 𝑠) ≤ 1. Hence if initial results from RE search returns

no result for all the key-phrases we useWordnet or SBertmodel

to identify semantically similar sentences to the key-phrases.

4.2 Iterative Search for Properties

We now formally describe the POSID algorithm, which uses the

models described in Section 4.1. We start with the observations that

led to the POSID algorithm.

Observations.We make the following observations: (O1) Com-

mon to O3.4, object-properties have the single and multiple value

contrasts. (O2) Some properties follows specific patterns such as,

gender = {male, female, man, woman}, whereas some proper-

ties have variable values, as shown in O3.5. (O3) Adjectives (ADJ)

are used for naming or describing characteristics of a property, or

used with a NOUN phrase to modify and describe it. (O4) Property

values can span multiple tokens, but they tend to be consecutive.

(O5) Property values for clothes generally include the color, a

range of colors, or a description of material. (O6) Clothes usually

is described after consecutive tokens with VERB tags 𝑉𝐷𝐺 (such as,

gerund or present participle (VBG), past tense (VBD) etc). If proper

syntax is followed, an entity is described with a VBD followed by

a VBG. In most cases, mentioning wearing. (O7) After a token

with VBG tag, until any ADJ or NOUN tag is encountered, any to-

kens describing a 𝑃𝐷𝐶𝑃 {Determiner, Conjunction, Preposition}, or

a Participle, or Adverb is part of the property-name. An exception

would be any 𝑃𝑃𝐴𝑉 {participle, adverb, or verb} preceded by any

𝑃𝑃𝜖 {pronouns or non-tagged tokens}, which ends the mention of a

property-name.

Algorithm 2: POSID

Input: Collection of Sentences, 𝑇𝑠
Output: Collection of ⟨𝑛𝑎𝑚𝑒, 𝑣𝑎𝑙𝑢𝑒𝑠⟩ pairs, ⟨⟨o𝑝 , 𝑧𝑝 ⟩⟩

1 𝑓 𝑜𝑝 ← {gender, race, height}
2 𝐶𝑂𝐿𝑂𝑅𝑠𝑦𝑛 ← SYNSETS(“color”, NOUN)[0]
3 𝐶𝑠 ← EXTRACT-CANDIDATE-SENT-RE(𝑇𝑠 , 𝑄𝐻 )

4 if 𝐶𝑠 is 𝜙 then

5 𝐶𝑠 ← EXTRACT-CANDIDATE-SENT-MODEL(𝑇𝑠 , 𝑄𝐻 )

6 O𝐻 ←− ∅ /* Collection of ⟨𝑜𝑝 , 𝑧𝑝 ⟩ ≡ ⟨𝑛𝑎𝑚𝑒, 𝑣𝑎𝑙𝑢𝑒𝑠 ⟩ pairs */

7 foreach 𝑠 in 𝐶𝑠 do

8 foreach 𝑜 in 𝑓 𝑜𝑝 do

/* 𝐿𝑧 is last token in 𝑠 which is a property-value */

9 𝐿𝑧 = RE-PROP-VALUES(𝑠, o𝑝)
10 O𝐻 .APPEND (o𝑝 , 𝐿𝑧 )
11 𝑠𝑝 = RE-PROP-VALUES(𝑠 , Clothes)

12 if 𝑠𝑝 is 𝜙 then 𝑠𝑝 ← 𝑠 \ 𝐿𝑧
13 𝑁𝑖𝑑𝑥 ←− ∅ /* Index-List for property-name */

14 𝐷 ← ∅ /* List for property-values */

15 𝑇𝑜 ← TOKENIZE-WORD(𝑠𝑝) /* List of tokens from 𝑠𝑝 */

16 𝑇𝑎 ← POS(𝑇𝑜) /* List of ⟨token, POS-tag⟩ from tokens */

/* 𝑤𝑖 and 𝑡𝑖 is token and POS-tag at 𝑖𝑡ℎ index in 𝑇𝑎 */

17 for (𝑤 , 𝑡 ) in 𝑇𝑎 do

18 if 𝑡1 is VBD then continue

19 if 𝑡2 is VBG and 𝑡1 is VBD then continue

20 if 𝑡𝑖 ∈ 𝑃𝐷𝐶𝑃 ∪ 𝑃𝑃𝐴𝑉 then

21 if 𝑡𝑖 ∈ 𝑃𝑃𝐴𝑉 and 𝑡𝑖−1 ∈ 𝑃𝑃𝜖 then break

22 𝑁𝑖𝑑𝑥 .APPEND (i)

23 else if 𝑡𝑖 is ADJ then
24 𝑁𝑖𝑑𝑥 ←− ∅ /* re-initialize name index-list */

25 𝐷 .APPEND (𝑤𝑖 )

26 else if 𝑡𝑖 is NOUN then

27 𝑆𝑤 ← SYNSETS(𝑤𝑖 , NOUN)
28 𝑁𝑖𝑑𝑥 , 𝐷 , 𝑑𝑐𝑜𝑙𝑜𝑟 = MATCH-W-COLOR(𝑆𝑤 , 𝑁𝑖𝑑𝑥 , 𝐷)

29 if 𝑑𝑐𝑜𝑙𝑜𝑟 then continue

30 𝑁 ← 𝑤𝑖

31 𝑁 ← POPULATE-PROPERTY-NAMES(𝑁𝑖𝑑𝑥 , 𝑁 , 𝑇𝑎)
/* finalize property-name & assign the values */

32 if 𝑡𝑖−1 is NOUN and O𝐻 [−1] .𝑛𝑎𝑚𝑒 == 𝑤𝑖−1
then CONCAT (O𝐻 [−1] .𝑛𝑎𝑚𝑒 ,𝑤𝑖 , " ")

33 else O𝐻 .APPEND ([𝑁, 𝐷])
34 𝑁𝑖𝑑𝑥 ←− ∅, 𝐷 ← ∅ // re-initialize Lists

35 else break

36 return O𝐻

Algorithm 2 presents the pseudocode of the search technique

POSID, which takes the sentences in a document 𝑇𝑠 as input and

returns the collection of object-properties and their set of values,

⟨⟨𝑜𝑝 , 𝑧𝑝 ⟩⟩ as output. In case of an implicit mention of clothes, we

made an assumption that description of clothes are always fol-

lowed by gender, race, and/or height.
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Lines 3 - 5 Extract the candidate sentences with the RE-search.

If results are empty, extract them with semantic or classification

models. Set of key-phrases 𝑄𝐻 is provided by the system.

Lines 8 - 10 Iteratively search for all the finite-valued properties

{gender, race, height} in each 𝐶𝑠 and append them to output.

RE-PROP-VALUES is a regular expression matching function that

takes sentence 𝑠 and property-name𝑜𝑝 as input, and outputs (1) prop-

erty-value 𝑧𝑝 , if 𝑜𝑝 is a finite-valued property, or (2) partial sentence

𝑠𝑝 , if 𝑜𝑝 is a variable-valued property. Each 𝑜𝑝 is mapped to a search-

string pattern, 𝑠𝑅 in 𝑇 .

Lines 11 - 12 For clothes, RE-PROP-VALUES returns either a par-
tial sentence 𝑠𝑝 starting with wearing, or an empty string. In case

of an empty string, extract the remaining string from 𝐿𝑧 after dis-

carding the extracted values in lines 8 - 10.

Lines 18 - 19 If first and second token is verb, it is the start for the

Relation property. Following (O6), ignore consecutive verbs until

another tag is encountered.

Lines 20 - 22 Following (O7), capture tokens from a VERB until

any pronoun or non-tag as free-form property value for clothes.

Lines 23 - 25 Capture the adjectives as clothes descriptions, and

initialize the next property.

Lines 27-29 For noun descriptors in the value i.e., grey dress pants,

compare the wordnet-synset meaning for color (𝐶𝑂𝐿𝑂𝑅𝑠𝑦𝑛) to

the noun-token meaning. Since a description is encountered, name-

index is re-initialized for the next property-name.

Lines 30-31 If a noun-phrase is not a color, it is considered as cloth-

name with multiple tokens i.e., dress pants, tank top, dark clothing.

Populate the property-name by backtracking the name-index list.

Line 33 If previous token is NOUN and does not match last to-

ken of the previous property-name, description for next property

has started. Finalize the current property name and value by ap-

pending it to result. Otherwise, in line 32, amend the last inserted

property-name by appending the current token to it.

Generalization. Algorithm 2 assumes that the property identifier

is intended for human-properties. POSID can be generalized to

any object-properties in text as long as the property-names and

type of values are known. Search-string for fixed-valued properties

have to be re-designed. Variable-valued properties following some

degree of grammatical structure, would be covered by the iterative

search pattern in POSID. Color will be replaced by the phrase

that describes the properties in the corresponding system. 𝑄𝐻 are

highly non-restrictive phrases and can be constructed from entity

types or entity names.

5 EXPERIMENTS

Dataset Construction. We adopt the MARS person re-ident

ification dataset from [78] to benchmark the property identifiers

in visual modalities. MARS consists of 20,478 tracklets from 1,261

people captured by six cameras. There are 16 properties that are

labeled for each tracklet, among which we used - gender (male,
female), 9 bottom-wear colors, and 10 top-wear colors.

For property identifiers in textual modalities, we build a collec-

tion of text data, named InciText dataset from newspaper articles,

incident reports, press releases, and officer narratives from the local

police department. We scraped local university newspaper articles

to search for articles with keywords i.e., investigation, suspect, ‘per-

son of interest’ and ‘tip line phone number’. InciText provides ground-

truth annotations for 12 properties describing human attributes

with most common being – gender, race, height, clothes and

cloth descriptions (colors). Each report, narrative, and press

release describes zero, one, or more persons.

Using the above-mentioned datasets, we built the (InciText +

MARS) dataset to evaluate the retrieval performance of FemmIR.

The composition statistics for each modality are: (1) Image (3270

/1100/1144), (2) Text (296/178/145), and (3) Video (1454/499/539),

where (*/*/*) stands for the sizes of training/validation/test subsets.

For the ground-truth, we ranked the data samples in ascending order

of the penalties for the mismatched properties. The properties were

chosen depending on the user requirement, and the mismatches

were assigned different penalties. In Example 1.1, an officer searches

in the following order: (1) same gender and race, (2) same bottom

clothing, and (3) same top clothing. The intuition behind this is if

there is a gender mismatch, they are definitely not the same person.

It is possible for a person to change the top clothing in a short span

of time, but it is harder to change the bottom clothing. So even if

there is a mismatch on top color, there is a chance of it being the

same person given similar time-span and vicinity. Therefore, we

set the penalty for each mismatched property as follows: 𝑟𝑐𝑜𝑠𝑡 (top-

color) = 1, 𝑟𝑐𝑜𝑠𝑡 (bottom-color) = 2, and 𝑟𝑐𝑜𝑠𝑡 (gender) = 3, with

gender having the highest penalty, hence the highest importance.

Exact matches are the top most in the ranking with a zero penalty.

Settings. ForWord2Vec, we used the 300 dimensional pretrained

model from NLTK [33] trained on Google News Dataset
1
. We

pruned the model to include the most common words (44K words).

From NLTK, we used the built-in tokenizers and the Wordnet

package for retrieving the synsets and wu-palmer similarity score.

For SBERT implementation, we used the zero-shot classification

pipeline
2
from transformers package using the SBERT model fine-

tuned on Multi-NLI [70] task. For part-of-speech tagging, we used

the averaged perceptron
3
tagger model. The manual narratives in

the InciText dataset were excluded for property identification task.

Query phrases used for𝐶𝑠 identification are:𝑞𝐻 = { clothes, wear,
suspect, shirts, pants }. We follow the original train/test

partition of MARS [78] dataset for benchmarking. For models in

[7, 20, 34], we formed a training batch by randomly selecting 32

tracklets, and then by randomly sampling 6 frames from each track-

let. During testing, 𝐹 frames of each tracklet are randomly split

into ⌊ 𝐹𝑛 ⌋ groups, and the final result is the average prediction result

among these groups. We used a validation set of mutually exclusive

125 people selected from the training set. For color sampling, we

used the result from the first frame from each tracklet. We com-

pared three properties across all models - gender, top color and

bottom color. For the retrieval model, we only considered the

synthetically generated part of InciText. For munkres, we used the

API from clapper
4
. We did not use the local node-node interaction

information during the training phase for FemmIR.

1
GoogleNews-vectors-negative300

2
zero-shot-classification

3
https://www.nltk.org/_modules/nltk/tag/perceptron.html

4
https://software.clapper.org/munkres/api/index.html
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Attr-Only Attr-Value 𝜃𝐻 𝑞𝐻
Models Precision Recall F1-Score Precision Recall F1-Score

Word2Vec + POSID 0.83 0.38 0.52 0.85 0.35 0.49 0.5 clothes

RE + POSID 0.86 0.82 0.84 0.92 0.82 0.87 X wear

WordNet + POSID 0.93 0.33 0.49 0.89 0.30 0.45 0.9 clothes as noun

SBERT + POSID 0.83 0.49 0.62 0.86 0.45 0.59 0.85 clothes

RE + WordNet + POSID 0.93 0.65 0.77 0.92 0.87 0.90 0.9 clothes as noun

RE + SBERT + POSID 0.87 0.87 0.87 0.92 0.87 0.90 0.85 clothes

Figure 2: Performance of Different Candidate Sentence Extraction Models based on Clothes Property Identification

Properties CNN (Resnet50) 3D-CNN CNN-RNN Temporal Pooling Temporal Attention Color Sampling

acc F1 acc F1 acc F1 acc F1 acc F1 acc F1

top color 75.22 73.98 67.91 65.19 70.54 67.33 74.98 73.13 76.05 74.64 44.65 38.31

bottom color 73.55 54.09 59.77 36.56 67.71 44.44 71.69 47.84 70.15 46.89 45.26 15.88

gender 90.01 89.71 86.49 76.22 90.07 89.62 91.04 90.63 91.82 91.48 - -

average 79.59 72.59 67.97 59.18 76.11 67.13 79.24 70.53 79.34 71.01 44.96 27.10

Figure 3: Comparison of Property Identifiers for Videos with Accuracy (acc) and F1 measure on MARS dataset (%)

Attributes Gender Race Height

Clothes

Attr-only

Clothes

Attr-value

Precision 0.94 0.94 0.72 0.87 0.92

Recall 0.73 0.73 0.57 0.87 0.87

F1-Score 0.82 0.82 0.63 0.87 0.90

Figure 4: Human Attribute Extraction Results

Property Identification in InciText dataset. We compared

the baseline RE-model with the other approaches in Section 4.1 for

finding𝐶𝑠 . Two different set of metrics were used for the evaluation

of clothes identification. (Attr-only) evaluates how efficiently

the model identified all clothes, and (Attr-value) calculates the

performance of the model in identifying both the attribute and its

descriptive values. For Attr-value, a true positive occurs only when

a valid clothes name and a correct description of that cloth is dis-

covered. Figure 2 describes the performance of different candidate

sentence extraction models based on the performance of clothes

identification. For the baseline, the group of tokens around wear
returned three times better F1-score than any other 𝑞𝐻 . With the

othermodels,𝑞𝐻 = {clothes} produced the best score. (RE + SBERT)
stacked model performs best with 87% and 90% F1-Scores, for both

metrics. Although (RE + Wordnet) has a higher precision score of

93% for Attr-only, it has a low recall score of only 65%, indicating

over-fitting. Based on a property-frequency analysis, we showed the

identification results for a subset of properties in O𝐻 for InciText.

Figure 4 shows the performance of POSID with (RE+SBERT) for

stacked model (lines 3 - 5). For gender and race, the model showed

the efficacy of the chosen search-pattern with 94% precision score.

A recall score of 73% shows that most people follow similar style for

describing gender and race. For height with only 57% recall score, a

rule based model is not sufficient due to varied styling.

Benchmarking for Property Identifiers in Visual Modality.
Since MARS has a large amount of ground truths for person at-

tributes, we compared existing models from Person Re-Identification

task. From the CNN models, we used the image-based Resnet50

[17] as baseline. Due to the temporal nature of videos, we also

compared the 3D-CNN [20], CNN-RNN [34], Temporal Pooling

and Temoporal Attention [7] models. As a heuristic based model,

we chose the color-sampling model from [64]. Figure 3 describes

the bench-marking results for the compared models. Resnet50 per-

formed significantly better than other models for bottom-color,

while temporal attention worked best for top-color. Considering

the average performance on all attributes, we choose the image-

based CNN model for the retrieval task. Since the properties in our

task are all motion-irrelevant, the video based extraction models

do not have a large impact on the performance. In terms of training

data and time, color sampling surely has an advantage. Resnet50

needed 513 minutes and the temporal attention model needed 1073

minutes for training, whereas color sampling has zero training time.

Color sampling works by isolating body regions and evaluating on

pixel values, hence the presence of sunlight or clouds may have

adversely affected the performance.

Retrieval Performance of FemmIR. We compared FemmIR

with the EARS method [61]. Since EARS does not require any train-

ing, we only used the test set in (InciText + MARS) . We formulated

the JOIN queries in EARS method on properties from Example 1.1.

The results were a union among an exact match, and partial matches

for the individual properties.

For evaluation, we considered cross-modal retrieval tasks as

retrieving one modality by querying from another modality, such

as retrieving text by video query (Video → Text) or, retrieving

image by text query (Text→ Image). We also show the comparison

for multi-modality retrieval. By submitting a query example of any

media type, the results of all media types will be retrieved such

as (Image→ All, Text→ All). We adopt mean average precision
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Query Target EARS FemmIR

Image Text 0.54 0.40

Image 0.27 0.27

Video 0.33 0.29

All 0.30 0.28

Text Text 1.0 0.52

Image 0.37 0.29

Video 0.46 0.33

All 0.43 0.31

Video Text 0.62 0.43

Image 0.30 0.29

Video 0.37 0.30

All 0.34 0.30

Avg 0.44 0.33

(a) Performance of EARS and

FemmIR in mAP(%)
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FemmIR: img --> txt
EARS: img --> img
FemmIR: img --> img

(c) Image→ Text, Image

Figure 5: Performance of FemmIR on (InciText + MARS)

(mAP) as the evaluation metric, which is calculated on all returned

results for a comprehensive evaluation. We consider data samples

with CED < 3 in comparison to the query object, as relevant for
that query. This would return contents where persons only with

color mismatches are found.

With an average F1 score of 79.59% for video and image property

identifiers, the mAP scores of image and video queries are 27%-

37%. Text modalities with their high-performance identifiers get

the highest mAP across modalities. This indicates the dependence

on property identifier performance. Precision-recall (PR) curves

in Figure 5b and 5c show that at lower degrees FemmIR perform

comparably with EARS, but with higher degrees of recall, the per-

formance degrades. We will perform ablation studies (using local

node-node interaction or eliminating imbalance of modalities in

training data) in the future for FemmIR performance improvement.

6 RELATEDWORK

Metric Learning. [12, 31] uses hinge rank loss to minimize intr-

aclass variation while maximizing interclass variation. [10] mini-

mized the loss function using hard negatives with a variant triplet

sampling, but needs fine-tuning and augmented data. [73] uses an

additional regularization in the loss function with adversarial learn-

ing. [68] enables different weighting on positive and negative pairs

with a polynomial loss function. FemmIR has similarities to metric

learning with the objective of minimizing the edit distance between

two graphs. In contrast, FemmIR re-uses pre-extracted properties

and does not require data samples to create positive-negative pairs.

Weakly Supervised Learning. [36, 60] use weak signals from

entity and relationship similarities retrieved from video captions

and text. [61] assumes knowledge of the translation module which

makes it less adaptable to novel modalities. [1] uses a similarity-

based retrieval technique to extract images with similar subsurface

structures. FemmIR also uses a weak signal approach for ranking

relevant samples from multiple modalities, but the weak labels are

constrained to use the pre-extracted properties and must implicitly

maintain the structure between the entities and relationships.

Semantic Understanding with Encoding Networks. [27, 28, 55,

62] learns semantically enriched representations of multi-modal

instances by using global and local attention networks. Similarly,

FemmIR uses graph convolutional network [23] to align the most

important nodes contributing to the overall similarity, denoting the

most similar properties between samples.

Content-based Data Discovery. [14, 26, 38, 47, 56, 61] imple-

ment content-based data retrieval by taking user-provided example

records as input and returning relevant records that satisfy the

user intent. Our work shares similarities to DICE [47], which finds

relevant results by finding join paths across tables within the data

source. However, it focuses on discovering relevant SQL queries

from user examples, whereas FemmIR focuses on finding the rele-

vant content directly by finding similar object properties. EARS [61]

finds relevant data by applying JOIN queries on the user-required

properties from different modalities. Similar to EARS, we also as-

sume the knowledge of pre-identified properties. EARS can scale

to petabytes of data, but it needs additional queries to retrieve soft

similarities. The number of SQL queries increases proportionally

to the number of properties in the user query. Contrary to EARS,

we do not assume a common schema for all modalities and do not

require re-training from scratch to accommodate new modalities.

Cross-modal Correlation Learning. [44, 53, 76, 77] use canonical

correlation learning to linearly project the low-level features into

a common subspace. For non-linear projections, [2, 21, 40, 41, 65]

extended the linear methods [65] or used shallow [40, 41] or deep

networks [21] to learn the correlations. SDML [18] removes the

dependency of jointly learning from all modalities by predefining

a common subspace and using a deep supervised auto-encoder

for each modality. DSRL [67] directly learns the pairwise similar-

ities by integrating relation learning, capturing the implicit non-

linear distance metric which FemmIR also focuses on. Most of

these works assume the presence of class labels [76, 77], choice

of appropriate feature extraction, and translation models for spe-

cific modalities. This limits the capability to integrate new sources

or use pre-existing features/properties. FemmIR separates the fea-

ture extraction modules from the retrieval module and integrates

pre-identifier property from any modality using graph encoding

networks.

Although human attribute recognition from videos and images

has been well studied, we believe this is the first work that focuses

on finding them from the text. [6, 15] used sentence encoders and

dense neural networks to combine lexical and semantic features

for finding similar sentences in electronic medical records and

academic writing.

7 SUMMARY AND FUTURE DIRECTIONS

We introduced the problem of mismatch between the information

need and model features, along with the lack of annotated data

for multi-modal relevance. To this end, we presented FemmIR, a

framework that uses weak supervision from a novel distance metric

for data objects, and uses explicitly mentioned information needs

with existing system-identified properties. We demonstrated the

12



performance of FemmIR in identifying the relevant data to the user

example without supervised training and additional computational

resources. As a byproduct, we also demonstrated the efficacy of

HART, a human attribute recognition model from unstructured

text, outperforming the baseline language models. FemmIR has

successfully implemented a missing person use case and is being

updated to provide further assistance to local agencies in social

causes. In the future, we plan to extend FemmIR to include multi-

objective and evolving information needs to support more real-

world use cases.
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