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Dataset structure: Articles are nested within . i . . )
events and issue categories Task 1: Perception Drift Perceived bias # Outlet ideology
' » Can models detect when human-perceived bias More prevalent for subtle right-leaning content
» Designed for alignment, disagreement, and diverges from outlet-level ideology?
rationale modeling > Logistic Regression-+TF-IDF: 55.6% > Snlppet-le\.lel tone. +.Rat|0nale annotations
accuracy help expose interpretive judgments
How BiaslLab Captures Perceived Bias » Perception drift is learnable, but very subtle > GPT-40 mimics both strengths and blind spots
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_ Task 2: Rationale Classification » Structured annotations support alignment and
E).(ample A““Otat'on E"try’ | — » Can models learn to predict annotator-marked interpretability modeling, not just
Title: Anti-Trump celebs plan 'People’s State of the Union rationale types and relate to perceived bias? classification

Event: President Trump will deliver his first State of the Union _ _ .
» Human rationales as interpretable supervision

» Multi-label task over rationale types:

1. Directional (Framing-dominated)
2. Structural (Balance & Fairness and Factual)

Usable for critique modeling, alignment
feedback, explainability tasks, and
temporal drift analysis.

Article Snippet (excerpt):

A group of Hollywood elites, progressive groups, and other
Trump opponents are planning a “People’s State of the Union”
to counter the president’s first official address. The event,

coordinated by unions, organizers of the Women's March and 3. Neutral
Planned Parenthood, is being marketed as a celebration of the Rationale Type Precision Recall F1 Score Resources
“resistance,” closer to “th le’s point of view,” USA Tod —
rergilrstjgce closer to “the people’s point of view oday Jirectional 0.6 052 051
Marked Bias Indicators: structural 0.61 0.56 0.54 » Dataset: DOI: 10.5281/zenodo.15571668
» Marginalization of one side (Indicator 4): “A group neutral other 0.70 0.64 0.61 » Paper:
of Hollywood elites ... celebration of the resistance” Structural and neutral rationales are more learnable https://arxiv.org/abs/2505.16081
» Emotionally charged language (Indicator 0): : : : » Code:
Hollywood elites,” “social activists,” “public than directional (e.g., emotionally charged language).
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Human-Aligned, Resilient, Multimodal, Open-ended, Novelty-Informed Intelligence
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