

BiasLab: Explainable Political Bias Detection via Dual-Axis Human **Annotations and Rationale Indicators**

KMA Solaiman

Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County (UMBC), Baltimore, Maryland, USA

Motivation: From Coarse Labels to Perception Alignment

BiasLab captures what readers perceive and why to support human-LLM alignment.

Dataset Overview

- 900 partisan political articles curated across major U.S. events (2016–2018)
- ▶ 300 articles annotated via MTurk with dual-axis bias labels for both parties

- ► Each annotation also includes bias rationale indicators (e.g., labeling, omission, framing)
- ► Articles link to event metadata for reuse

Dataset structure: Articles are nested within events and issue categories.

Designed for alignment, disagreement, and rationale modeling

How BiasLab Captures Perceived Bias

Example Annotation Entry

Title: Anti-Trump celebs plan 'People's State of the Union' **Event:** President Trump will deliver his first State of the Union

Article Snippet (excerpt):

A group of Hollywood elites, progressive groups, and other Trump opponents are planning a "People's State of the Union" to counter the president's first official address. The event, coordinated by unions, organizers of the Women's March and Planned Parenthood, is being marketed as a celebration of the "resistance," closer to "the people's point of view," USA Today reported.

Marked Bias Indicators:

- ► Marginalization of one side (Indicator 4): "A group of Hollywood elites . . . celebration of the resistance"
- **Emotionally charged language** (Indicator 0): "Hollywood elites," "social activists," "public alternative"

Worker Labels: Right, Right

Final Human Label: Right Outlet Bias: Right

Annotation Pipeline

Pipeline overview: Each article is split into snippets. Annotators rate tone toward both parties and select rationale indicators with highlighted text.

Findings: Human Bias Perception

- Annotators underdetect right-leaning bias
- ► Agreement better on overt partisanship

Annotators often rate subtle right-leaning content as neutral - diverging from outlet bias.

Feedback Alignment Tasks

Task 1: Perception Drift

- Can models detect when human-perceived bias **diverges** from outlet-level ideology?
- ► Logistic Regression+TF-IDF: 55.6% accuracy
- ► Perception drift is learnable, but very subtle

Task 2: Rationale Classification

- ► Can models learn to predict annotator-marked rationale types and relate to perceived bias?
- ► Human rationales as interpretable supervision
- ► Multi-label task over rationale types:
- 1. **Directional** (Framing-dominated)
- 2. **Structural** (Balance & Fairness and Factual)
- 3. Neutral

Rationale Type	Precision	Recall	F1 Score
directional	0.62	0.54	0.51
structural	0.61	0.56	0.54
$neutral_other$	0.70	0.64	0.61

Structural and neutral rationales are more learnable than directional (e.g., emotionally charged language).

Human vs GPT-40 Alignment

► GPT-4o achieved higher outlet-label agreement (59%) vs. human annotators (48%)

GPT-40 mirrors human bias misclassifications.

Key Takeaways

Perceived bias \neq Outlet ideology More prevalent for subtle right-leaning content

- ► Snippet-level tone + Rationale annotations help expose interpretive judgments
- ► GPT-40 mimics both strengths and blind spots in human bias judgment
- Structured annotations support alignment and interpretability modeling, not just classification

Usable for critique modeling, alignment feedback, explainability tasks, and temporal drift analysis.

Resources

- **Dataset:** DOI: 10.5281/zenodo.15571668
- Paper: https://arxiv.org/abs/2505.16081
- ► Code:

