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Abstract—Existing multi-media retrieval models either rely
on creating a common subspace with modality-specific repre-
sentation models or require schema mapping among modalities
to measure similarities among multi-media data. Our goal is
to avoid the annotation overhead incurred from considering
retrieval as a supervised classification task and re-use the pre-
trained encoders in large language models and vision tasks. We
propose “FemmIR”, a framework to retrieve multimodal results
relevant to information needs expressed with multimodal queries
by example without any similarity label. Such identification is
necessary for real-world applications where data annotations are
scarce and satisfactory performance is required without fine-
tuning with a common framework across applications. We curate
a new dataset called MuQNOL for benchmarking progress on
this task. Our technique is based on weak supervision introduced
through edit distance between samples: graph edit distance can
be modified to consider the cost of replacing a data sample in
terms of its properties, and relevance can be measured through
the implicit signal from the amount of edit cost among the
objects. Unlike metric learning or encoding networks, FemmIR
re-uses the high-level properties and maintains the property-
value and relationship constraints with a multi-level interaction
score between data samples and the query example provided by
the user. We also proposed a novel attribute recognition model
from unstructured text “HART” that can identify attributes
without finetuning or large language models. We empirically
evaluate FemmIR and HART on a missing person use-case
with MuQNOL. HART successfully identifies human attributes
from large unstructured text without additional training, while
FemmIR performs comparably to similar retrieval systems in de-
livering on-demand retrieval results with exact and approximate
similarities while using the existing property identifiers in the
system.

I. INTRODUCTION

With the influx of multimedia data sources, comparing data
from different modalities to grasp a more informed deci-
sion for any phenomenon has become increasingly difficult.
Humans analyze information across modalities using many
indirect cues and common hints. But when it transfers to
hours of videos or thousands of documents, it is imperative
to have a recommender system that filters out the most
important information according to the user’s preference and
recommends with an unseen item that this user is likely
to interact in the future. Existing sequential recommenders
propose contrastive learning [1] or attention networks to do
representation alignments between multiple modalities based

on similarity labels across data from different modalities.
Without the similarity labels, it is impossible to adapt these
retrieval models by fine-tuning them to certain applications,
which is the most common scenario for most real-world use
cases.

Example 1 (Application-specific Information Need): An
organization wants to build an automated system to find video
frames containing persons of interest from many hours of video
feeds, connect them to previous occurrences from incident
reports, and find patterns among these occurrences. Alex is
asked to develop a machine learning (ML) pipeline over these
datasets to predict the videos where the person mentioned in
the text would be found, and, subsequently, the authority would
look for them in those videos. Alex decides to use an off-the-
shelf retrieval algorithm that is trained over video and text.
However, the performance was not satisfactory, as: (1) Alex
could not modify the model to focus on specific properties
that are most common for a missing person as he did not
know which video frames contained the person mentioned in
the reports, and (2) he could not perform transfer learning
as the annotated data is very difficult to achieve in this case,
where one positive case occurs in 8-10 hours of video. Now he
wonders: (1) how can he re-train the retrieval model without
any training data to focus similarity on the desired properties?
(2) if he runs a property identifier in each data modality and
performs only explicit matching would that achieve the desired
performance? (3) how can he map similar properties that are
described differently from each modality?

To address these issues, we propose a Feature-centric
Multimodal Information Retrieval model for open-world en-
vironment, FemmIR. Our framework designs multiple plug-
and-play components with effective representation alignment
and matching objectives to enable ranked information retrieval
across application domains and modalities. Specifically, we
leverage pre-trained text and vision property identifiers as
feature extractors. The modality-specific high-level features
are fused into multimodal item representation via a graph
representation approach and an attention network, which is
subsequently processed by a graph similarity approximation
model to capture the implicit similarities. Since we assume
no similarity label is available across multiple modalities, we
needed weak supervision from other sources [2], [3], [4], [5].
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We hypothesize that capturing how much change is needed to
convert a data sample to another can provide us with a source
of weak supervision. Considering a data sample as a collection
of objects with certain properties along with the relationships
among them, we modeled a novel distance metric based on
graph edit distance (GED).

We introduce a new benchmark and dataset called
MuQNOL (Multimodal Queries with NO similarity Label)
to train and evaluate models to retrieve the relevant data from
a multimodal corpus given multimodal (vision + language)
queries without any similarity labels. To create this dataset,
we start with the MARS [6] dataset as a source – MARS is
a large-scale dataset of pedestrian image sequences with 16
annotated attributes. We combined it with an unstructured text
dataset, InciText, consisting of incident reports, press releases,
synthetic reports, and officer narratives from old police cases.
We also annotated InciText [7] for three attributes with a
wide range of possible values. We proposed a novel Human
Attribute Recognition model from unstructured TEXT, HART
to identify these attributes from InciText. From the 16 at-
tributes in MARS, we select common attributes in MARS and
InciText for MuQNOL where the retrieved answer includes
both an image, video, and text.

Unlike existing multimodal retrieval models, FemmIR does
not require a large amount of training data, and data represen-
tations can be aligned through the weak supervision. Among
existing works, correlation learning methods [8], [9], [10],
[11], [12], [13], [14] linearly or non-linearly projects low-level
features from representation models to a common subspace.
Metric learning methods [15], [16], [17] learn a distance
function over data objects based on a loss function to map
them into the common subspace. FemmIR closely relates to
metric learning methods. Contrary to them, we do not directly
correlate class labels or weak labels to the loss function.
The proposed edit distance between property graphs implicitly
captures the signal for relevance. In contrast to common
representation learning models, data discovery models based
on relational queries allow more flexibility to consider explicit
information needs from users, and use high-level properties
in the system. EARS [18] is one such content-based data
discovery system that, similar to our approach, takes user
examples as queries and delivers relevant multi-media results.
However, the prime aspect of EARS is it assumes a schema
mapping among all modalities, the number of JOIN queries
increases as a product of the number of properties-of-interest
and modalities, and to introduce new modalities the common
schema needs to be updated. In contrast, FemmIR offers a
general solution to include retrieval from novel modalities for
a diverse set of systems and does not need an explicit design
for each new modality.

Our contribution and findings are listed below.
• We introduce a new dataset MuQNOL to facilitate re-

search on multimodal information retrieval for real-world
use cases without similarity labels.

• We propose an end-to-end retrieval model, FemmIR, that
delivers ranked results from multimodal data relevant to

a given multimodal query using weak supervision from a
novel distance metric CED. FemmIR does not need any
similarity label and can be pre-trained on any application
domain for faster inference time.

• We benchmarked another end-to-end model, EARS on
MuQNOL dataset. EARS is an exact inference model
for multimodal data retrieval. We observed that FemmIR
is a capable multimodal retriever that surpasses existing
multimodal knowledge retrieval methods without fine-
tuning.

• We proposed HART, to retrieve attribute values from the
unstructured text as part of the basic property identifiers
for the FemmIR framework.

II. PRELIMINARIES & PROBLEM DEFINITIONS

In this section, we first provide formal definitions relevant
to our proposed methods. We then proceed to formulate the
problem of multimodal information retrieval for unconstrained
data for property-specific information needs, and the problem
of object-property identification from text.

Definition 2.1 (Attributed relational graph): An attributed
relational graph (ARG) is a graph whose nodes and edges
have assigned attributes (single value or vectors of values).
Although we focus our methodology only on directed and
labeled graphs, it is designed to handle any form of graphs.
An ARG is defined as: g = (N,E, l) where

1) N is the finite set of nodes,
2) E ⊆ N ×N is the set of edges,
3) l : N(g) ∪ E(g) → Σ is a labeling function that assigns

labels to each vertex and edge from Σ.
4) Σ is a set of unconstrained labels. A ∈ Σ represents labels

enumerating the node-type.
Definition 2.2 (Wu-Palmer Distance): Wordnet [19] is a

lexical knowledge base where words are organized in a
hypernym tree based on their origin. Wu-Palmer distance
calculates the similarity between word meanings based on the
similarity between the word senses and the location of the
synsets relative to each other in the hypernym tree. Given
the synsets of two strings st1 and st2 , and the LCS (Least
Common Subsumer) between them, the Wu-Palmer distance
is:

wpdist(st1 , st2) = 2 ∗ depth(lcs(st1 , st2))

depth(st1) + depth(st2)
(1)

Definition 2.3 (Natural Language Inference): Given a hy-
pothesis h and a premise p, natural language inference (NLI)
is the task of determining the probability Pr of the hypothesis
being true (entailment E), false (contradiction C), or undeter-
mined (neutral N ). NLI determines the best label l:

arg max
l∈{E,C,N}

Pr(l | h, p) (2)

A. Problem Definitions

Assuming a collection of data from M ∈ Z+ modalities,
we denote the set containing ni ∈ Z+ samples from the i-th
modality as Di = {di

1,d
i
2, . . . ,d

i
ni
}, where j-th sample of

the i-th modality is di
j .

2



Any data sample di
j is described with a subset of object

properties, O = {o1,o2, . . . ,ol} where zr is the set of values
of or. Property identifiers implement a relation, PROP (di

j)
⊂ O that maps a data-sample to a set of object-properties.
A query is issued against a corpus with M-modalities,
D = {D1,D2, . . . ,DM}.

Problem 2.1 (Multimodal Information Retrieval): Given a
query in modality m, dm

q , the task is to retrieve a ranked
list, R = (dx1

1 ,dx2
2 , . . .dxt

t ) of t ∈ N0 data-samples from
all available modalities in the system satisfying PROP (dm

q ).
dm
q can be expressed in two different ways:

(1) (Query-by-Properties) dm
q with p object-properties

{o1 = z1,o2 = z2, . . . ,op = zp}, or
(2) (Query-by-Example) An example data-sample, dm

q with
the PROP relation.

Relevance is scored based on the degree of common object-
properties between a data-object dxc

c in the ranked list, and
the query data dm

q , PROP (dm
q ) ∩ PROP (dxc

c ). A similarity
score is used to define the degree of relevance,

0 ≤ SIM (dxc
c , dm

q ) ≤ 1.

Similarity score of 0 indicates non-relevance, whereas a score
of 1 indicates complete relevance and a proper subset,
PROP (dm

q ) ⊂ PROP (dxc
c ).

1) Property Identification from Unstructured Text: As a rel-
evant sub-task, we explore the problem of identifying proper-
ties describing humans from unstructured text. As discussed in
SurvQ [20], a finite number of visible and approximate proper-
ties such as, GENDER, RACE, BUILD, HEIGHT, CLOTHES, etc.
are used in describing a person-of-interest to search for them.
We denote these properties for person identification as OH .

Example 2: The sentence “a †person with white
ethnicity and medium build was seen in
Vernon St., wearing white jeans and blue
shirt” describes properties of a person:

1) BUILD = medium,
2) ∗CLOTHES = {jeans, shirt},
3) UPPER-WEAR-COLOR= {white},
4) BOTTOM-WEAR-COLOR = {blue}, and
5) RELATION = {wearing, †Person, ∗Clothes}.
Problem 2.2 (Human Attribute Recognition from Text):

Given a large text T with Ts sentences, each with |w| tokens,
the problem of human attribute recognition from T is to

1) identify the set of sentences Cs ⊂ Ts that describes
properties of a person,

2) expose the set of object-properties OH from Cs and
3) extract the set of values zp of the identified properties op.

Our problem setting assumes that the set of key-phrases (QH )
often used in sentences describing properties of a person are ei-
ther known (provided by domain experts), or a small amount of
annotated documents are provided to identify QH manually.
In Example 2, QH = {wearing}. The first assumption is
derived from the literature on pedestrian attribute recognition

from visual and textual modalities, and the second assumption
is computationally inexpensive. Note that, (QH ∩ OH) ̸= {ϕ}.

Definition 2.4 (Candidate Sentences): Given a collection
of sentences Ts, key-phrase for describing an object in text
qH ⊂ QH , and an empirical threshold θH , Candidate
sentence is

Cs = {s : s ∈ Ts, qH ∈ QH | SIM(qH , s) > θH} (3)

III. MULTIMODAL INFORMATION RETRIVAL

Our proposed similarity matching algorithm considers the
data samples from the data repository or the data streams,
dxc
c and user-provided example, dm

q as input and outputs
the similarity score between them: SIM (dxc

c , dm
q ). The

corresponding object properties are assumed to be extracted by
the system-specific property identifiers in the pre-processing
stage. We propose a novel distance metric to rank the data
samples based on the number of edits needed to convert the
properties of one sample to another instead of manually anno-
tating or aggregating the number of matched object properties.
To this end, we first process the extracted properties from the
input data samples with a graph encoding mechanism which
converts the properties into a hierarchical attributed relational
graph (HARG) and generates a graph representation for each
sample. Then FemmIR adopted the Munkers’ algorithm [21] to
calculate the proposed edit distance between the data samples
and use it as a similarity label. Finally, we used an edit
distance approximation algorithm with Neural Tensor Network
(NTN) to learn a function to map the graph embedding of the
HARGs to a similarity score between the data samples. During
inference, the model just takes the extracted properties from
the data samples and outputs the similarity score by using the
mapping function. We start with a use case to demonstrate the
information retrieval task and our observations that led to the
proposed system.

A. Graph Representation for Data Sample

Consider the task of finding the location of a person from
a large amount of video data using text queries or reports.
The system finds the video feeds that have persons similar
to the report description by focusing on the object properties
of the person in the video and text. The goal is to identify
the similarity score between video feeds, text queries, and
incident reports which can then be used to deliver a ranked list
of relevant data samples to the user. We make the following
observations for property-specific multimodal queries:

OIII.1 The number of object properties between two data
samples is finite, and the values of the properties are
mostly categorical values.

OIII.2 A data sample can describe a large number of
objects and object properties, but for system-specific
similarity comparison, a user is only interested in a
finite number of properties.

OIII.3 Data samples are special objects with different prop-
erties such as metadata, topics, and events.
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Fig. 1: HARG and Weak Label Generation; Left sided graph refers to gq , and the right sided graph refers to gc. Node-type
labels are as follows. V: EPL Vertex, R: Root, P: Person, C: Clothes, T: Type, M: Motor-Vehicles. Squared nodes correspond
to the non-empty leaf nodes.

OIII.4 Relationships between objects are specific types of
object properties that belong to all participating ob-
jects. The set of values corresponding to the objects
would be complementary to each other. Value for
relation-name can be different for the same relation-
ship through different data samples. For example,
different text would describe the same action in
different forms: wearing, wear, has.

OIII.5 Some properties in zp have single and fixed value-set
i.e., GENDER, RACE, HEIGHT, while other properties
have multiple values in their value-set i.e., CLOTHES.

OIII.6 Some object properties such as, CLOTHES-COLOR
have different values for different data samples.
For example, in Figure 1, UPPER-WEAR-COLOR,
SHIRT-COLOR, COLOR all refer to the color of
clothes.

Our intuition here is that entities, relationships, and object
properties in a data sample have an inter-connected structure,
and if we can capture the number of changes to convert one
structure to another, then we can capture the differences be-
tween these samples. Based on this intuition, FemmIR starts by
constructing a hierarchical attributed relational graph, called
(HARG), with a common hierarchy for all data samples. The
choice of graph as a representation was influenced by the need
for a data structure with representation-invariant encoding
mechanisms that can capture the syntactic similarities between
different values.

Definition 3.1 (Hierarchical Attributed Relational Graph):
HARG is a specific type of ARG in the form of a multi-level
tree with |h| levels. It consists of a root node, multiple levels
of nodes and edges emanating from it, and specific type of

leaf nodes. Nodes at level h are denoted by Nh.
a) CONSTRUCT-HARG: Each data sample is repre-

sented as HARG, following the steps:
1) The graph starts with a single node at level 0 (h = 0)

containing a common label across all data samples in the
same application domain: l(N0) = {ROOT}.

2) Level 1 nodes constitute the object-properties of the data
sample itself where the property name is the edge label,
and the property value is the node label:

l(N0, N1) = op, l(N
1) = zp.

With the exception of op being an entity, N1 would be
a leaf node. For entities, we define the edge label as
l(N0, N1) = {hasEntity}.

3) In case a set of op describes the attributes of an entity,
Nk(k ≥ 1) will be a pointer to the attribute properties of
that entity, whereas l(Nk) = {entity-type}.

4) We categorize entities in two groups for each data sample:
primary, and secondary. Level 1 of HARG only contains
primary entities.

5) Level 2 and subsequent levels contain the attribute values
of the entities in the previous level with

l(Nk, Nk+1) = op(k ≥ 1), and

l(Nk) = zp(k ≥ 2).

From Definition 3.2, for RELATION properties, ⟨R,S,Arg⟩
where entity-pointer S is at level-k and entity-pointer Arg
is at level-(k + 1),

l(Nk, Nk+1) = R, l(Nk) = S, l(Nk+1) = Arg.
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6) There can be edges between entities in the same level with
RELATION properties, R. With nodes Nk and Nr,
l(Nk, Nr) = R, where l(Nk) ̸= l(Nr) but k = r.

7) The leaf nodes of HARG always contain a property-value
or a NULL value for zp = {ϕ}.

Figure 1 demonstrates two examples of hierarchical at-
tributed relational graphs from the MuQNOLdataset. R1 and
R2 refer to two different data samples. For the leaf nodes
T2,M1, and T3 in R2, zp = {ϕ}. Wear, and riding refers
to the RELATION property, where Persons are subjects, and
Clothes and Motor-vehicles are arguments.

Definition 3.2 (RELATION between Objects): For a n-ary
relationship R, identifiers associate each action with multiple
entity arguments, Arg1, Arg2, . . . , Argi, . . . , Argn with
role Ri

o. n-ary relationships are broken into multiple binary
relationships with

l(Nk, Nk+1) = {R : Ri
o}, l(Nk) = S, l(Nk+1) = {Argi}.

We made two assumptions for the generation process: (I) we
assume prior knowledge of the system-specific properties,
(II) the entity types for node labels are system-specific and
must be consistent through the lifetime of the system. This
assumption is valid since the property identifiers from each
modality would be system-specific and extracted object types
would be consistent across data samples.

b) Graph Embedding: For calculating the graph embed-
ding, first, Graph Convolutional Networks (GCN) [22] are
used on the HARG to obtain the node embeddings. GCN is
representation-invariant and allows us to account for different
kinds of labels for nodes and edges. It is also inductive and
allows computing the node embedding for any unseen graph
following the GCN operation, which makes it a great choice
for variable-sized FemmIR graphs. Then, a global context-
aware attention network is used to combine the node embed-
dings into a graph embedding. This allows FemmIR to learn
the importance of each feature in the similarity determination
as part of the end-to-end network.

B. Similarity Label Generation with Content Edit Distance

FemmIR further defines a new distance metric, Content Edit
Distance (CED) using a variation of the Munkres’ algorithm
[21] to calculate the amount of edits (changes) for optimal
alignment of the query-example HARG to HARG of another
data-sample. CED is considered as weak label for the retrieval
task for two reasons: 1) Munkres’ algorithm is suboptimal as it
only calculates approximate edit distance values, 2) the quality
of HARG rely on the choice of primary entity selection which
can be noisy. Our intuition was graph edit distance (GED)
calculation algorithms (A*-search, VJ, or Beam) would be
enough to calculate the number of changes after we have build
the HARGs, but we made following observations.

OIII.7 Different nodes and edges in HARG have different
change cost. User should be allowed to specify
individual property replacement cost.

OIII.8 GED calculation algorithms differ in speed based on
the number on nodes and HARG contains variable
sized graphs.

OIII.9 Object-properties such as, RELATION have depen-
dency between different levels of HARG and should
not be considered individually during the change
estimation. For example, for person wearing clothes,
edit cost for person and cloth should be consid-
ered together between different data-samples.

OIII.10 Considering OIII.5, we cannot calculate the edit cost
of certain properties just by replacing or deleting
them since they have multiple number of values in
their value-set.

For properties with list values, we consider two types
of comparison: (PRDIST) ordered comparison with modified
Levenshtein distance, and (HCOMP) unordered comparison
with hash table. Summing the cost of edits for all the prop-
erties between two data-samples ignores the inter-connected
structure among the properties. In Figure 1, the graph from R2
has two persons, and while comparing with R1 we would want
to know the minimal edit cost by considering which person in
R2 is closer to the person described in R1. CONTENT EDIT
DISTANCE calculates the cost for the minimal cost alignment
of one data-sample to another. Since only property values in
leaf nodes in a HARG have direct replacement cost, we
propose a new kind of vertex in HARG, Entity-with-Property-
in-Leaf (EPL) vertex (Definition 3.3) for calculating the cost
for an individual object assignment. Given EPL(V) is the
finite set of EPL Vertices, EPL(E) ⊆ EPL(V) × EPL(V)
is the set of edges, and EPL(L) ⊂ l is the labeling function,
a HARG is now defined as:

gepl = (EPL(V), EPL(E), EPL(L))

Definition 3.3 (Entity-with-Property-in-Leaf Vertices): A
node labeled with object-type (A) with their outgoing edges
labeled with object-properties (op) and the connected leaf
nodes labeled with property-values (zp) are considered as
ENTITY-WITH-PROPERTY-IN-LEAF (EPL) Vertex, EPL(V).
A node without any leaf nodes is also considered as an EPL
vertex. An EPL vertex can be connected to other EPL vertices
and have its own cost functions.

a) Munkres Algorithm for CED calculation: We con-
sider the CED calculation as an assignment problem and
adopted the bipartite graph matching method in [21]. Com-
pared to the exponential time-complexity of A*-search,
Munkres’ [21] algorithm has a polynomial time complex-
ity. Estimating content edit distance instead of a sim-
ple property-to-property comparison allows the flexibility
to consider the dependency between properties and graph
levels. Given the non-empty HAR graph from query-
example, gqepl = (EPL(V)q, EPL(E)q, EPL(L)q) and the
HAR graph from the compared data-sample, gcepl =
(EPL(V)c, EPL(E)c, EPL(L)c), where
EPL(V)q = {u1, . . . , un}, EPL(V)c = {v1, . . . , vm}, the
Munkres’ algorithm would output CED (gqepl, g

c
epl). We made

the following adjustments to the Munkres’ algorithm in [21].
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1) EPL-vertices in the query graph need to be aligned to the
data-samples, hence we will fix the assignment size k to
|EPL(V)q|.

2) For data retrieval, the entities and relations in query graph
needs to be in comparison-graph, otherwise indicates miss-
ing property. So there is no need to add dummy nodes to
gqepl. Formally, if n > m, only the costs for max{0,m−n}
node insertions have to be added to the minimum-cost node
assignment.

3) Next, the n×m cost-matrix C is generated. (1) For different
type of objects A in ui and vj the replacement cost is set
to ∞. (2) The cost for a single object assignment Ci,j is
calculated by comparing the property values zp (normal-
comparison and list-comparison) in EPL-vertex ui and vj .

4) To accommodate for OIII.6, while applying Adjacency-
Munkres, we set the default cost of an edge replacement
c(eui

→ evj ) based on the Wu-Palmer distance between
Synsets of l(eui

) and l(evj ). eui
denotes all edges con-

nected to ui and evj denotes all edges connected to vj . In
general, any language embedding can be used instead of
Synsets.

c(eui
→ evj ) = 1/wpdist(sl(eui

), sl(evj )) (4)

b) Cumulative-Munkres: Using Adjacency-Munkres
from [21] allows us to find the optimal assignment of each
EPL vertex without taking into account the dependency
among them OIII.9. We utilize the levels from HARG to
include the dependency information into the cost-matrix. So
for every Ci,j in the cost matrix from adjacency-munkres
denoting an assignment of ui to vj , we add their parent
EPL-vertices assignment cost to Ci,j , starting from EPL-
vertices in level-1. In the remainder of this paper, we will
call this method CUMULATIVE-MUNKRES since it uses the
cumulative cost of the parent and child nodes to preserve the
dependency information.

C. Approximate CED Inference
Finally, we propose to use an end-to-end neural network

model, SimGNN [23] to learn an embedding function to map
dq and dc into a similarity score based on the CED score.
User requirements (such as relationships between properties,
searching in a time range, or within a specified location, etc.)
and different system constraints are considered as function
parameters with appropriate replacement costs while calculat-
ing CED. Similarity scores for training the model are derived
by normalizing the distance scores [24] and applying an
exponential function on the normalized score. (Line 26 in
Algorithm 1). The embedding function outputs a number of
interaction scores between the pair of graphs using Neural Ten-
sor Networks (NTN) [25] on the graph embeddings. Finally,
a multi-layer fully connected network is applied to learn a
single similarity score from the interaction scores, which is
compared against the weak CED labels or the ground-truths
using mean squared error loss.

Lmse =
1

|D|
∑

dq,dc∈D

(ŝ− s(dq, dc))
2 (5)

where D is the set of data samples from the repository or
the stream, ŝ is the predicted similarity score, and s(dq, dc) is
the ground-truth similarity between dq and dc. This similarity
score allows us to rank the data samples against the query
example.

D. FemmIR algorithm

Algorithm 1 FemmIR
Input: Query example and a single Data sample, dq and dc

Replacement cost for property op, RCOST(op)
Insertion cost for property op, ICOST(op)

Output: Similarity score between dq and dc, SIM (dq, dc)
1: Oq ← PROP(dq), Oc ← PROP(dc)
2: gq ← CONSTRUCT-HARG (Oq)
3: gc ← CONSTRUCT-HARG (Oc)
4: if training then
5: gqepl, gcepl ← DISCOVER-EPLV(gq, gc)
6: C ← ϕ
7: foreach ui ∈ EPL(V)q do
8: foreach vj ∈ EPL(V)c do
9: if TYPE(ui) ̸= TYPE(vj) then Ci,j= ∞

10: foreach op ∈ ui do
11: if op /∈ vj then Ci,j += ICOST(op)
12: else if TYPE(zp) is not list then

▷ zp(ui)is value of op in vertex ui

13: if zp(ui) ̸= zp(vj) then
14: Ci,j+= RCOST(op)
15: else
16: Ci,j+= 0
17: else

Ci,j + =

{OCOMP ∗ PRDIST(zp(ui), zp(vj))+

(1− OCOMP) ∗ HCOMP(zp(ui), zp(vj))}

18: Ci,j= Ci,j+ min{
∑

c(eui → evj )}

19: if MTYPE then
20: foreach ui ∈ EPL(V)q do
21: foreach vj ∈ EPL(V)c do
22: uî = parent(ui), vĵ = parent(vj)
23: Ci,j = Ci,j + Cî,ĵ

24: CED( gq, gc ) = MUNKRES (C)
25: nCED= CED( gq,gc )

(|gq|+|gc|)/2
26: SIM (dq, dc) = e−nCED

27: else
28: SIM (dq, dc) = SIMGNN( gq, gc )

Algorithm 1 presents the pseudocode of our retrieval
algorithm FemmIR which takes two data samples as input
and returns the similarity score between them as output.
Line 1 Extract the set of properties and their values, Oj

from data-sample dj using the modality-specific property-
identifiers.
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Lines 2 - 3 Construct the Hierarchical Attributed Relational
Graphs using the identified properties following the steps in
Section III-A.
Lines 4 - 26 During training, generate the CED as weak
label using the Munkres algorithm. CED is used to calculate
the similarity score, and this pair of data-samples and the
similarity score is added as training sample for SIMGNN.
Line 5 Calculate the EPL-vertices in the HARGs, gepl.
Line 6 Initialize an empty n×m cost-matrix C.
Lines 7 - 8 Iterate through all the vertices in EPL(V)q and
EPL(V)c and compare the properties in each vertex to assign
the costs.
Line 9 For different types of object, set the cost to ∞, not
allowing different types of object to be aligned.
Line 11 If a property in ui is absent in vj , it needs to
be inserted in vj . Increment the cost-matrix value by the
insertion-cost.
Lines 12 - 16 If the property is not a list, then just compare
the values in ui and vj . If they mismatch, add the replacement
cost to the cost-matrix, otherwise nothing is added.
Line 17 If the property is a list, we need to compare them
either with a Levenshtein distance (ordered comparison) or
with a hashmap (unordered comparison) from Section III-B.
OCOMP is a control variable to specify what kind of
comparison is required. The overall cost is added to cost-
matrix.
Line 18 For applying Adjacency-Munkres, the minimum
edge replacement cost is added to the cost matrix using
Equation 4.
Lines 19 - 23 If Cumulative-Munkres is required (set by
MTYPE), cost-matrix entry of the parent vertices are added to
each Ci,j .
Line 24 Apply the Munkres algorithm to calculate the optimal
assignment based on C, and the associated cost is the CED.
Line 26 Normalize CED to the graph sizes and apply an
exponential function to convert it to a similarity score in the
range of (0, 1]. Add it to training sample for SIMGNN.
Lines 27 - 28 During inference, apply the learned mapping
function to predict the similarity score from the HARGs and
rank based on that.

Generalization:

1) Algorithm 1 assumes that the edge labels for level 0 are
fixed to hasEntity and metadata with granularity (such
as time, location, etc.). These are flexible and can be
set to any labels in FemmIR as long as it is consistent
throughout the lifetime of the system.

2) Object-types are assumed to be system-specific, and can
be variable across different systems and applications.
FemmIR can handle any labels for entity-type since the
retrieval result does not depend on it. The comparison
between properties is affected by it which remains valid
as long as the same heuristics are maintained for all
modalities in a system.

3) FemmIR is capable of handling different replacement

costs and insertion costs for properties in different ap-
plication domains.

4) For the edge replacement cost, any language embedding
will work as long as the objective function places seman-
tically similar tokens closer to each other.

IV. HUMAN ATTRIBUTE RECOGNITION FROM
UNSTRUCTURED TEXT (HART)

We now describe the property identification technique for
unstructured texts to extract attribute-based properties from
large text documents. Our algorithm considers the full docu-
ment as input and reports a collection of object-properties and
their set of values, as output. To this end, we first identify the
candidate sentences Cs from a collection of sentences Ts by
searching for the key-phrases (qH ) using pre-trained language
representation models and lexical knowledge bases. Then,
we propose individual property-focused models to extract the
attributes and their corresponding values using the syntactic
characteristics (i.e., parts-of-speech) and lexical meanings of
the tokens in the Candidate Sentences. Our heuristic search
algorithm, POSID iteratively checks the tokens in the candi-
date sentences and based on the assigned tags in accordance
with their syntactic functions identifies the properties in OH

and their values.

A. Candidate Sentence Extraction

A naive approach to this task would be to consider it as a
supervised classification problem given enough training data.
Since during this work, the primary goal was to define on-
demand models that works in absence of training data, we
designed this as a similarity search problem using pre-trained
and lexical features, where the similarity between sentence
and key-phrase needs to reach an empirical threshold. We now
proceed to describe the different methods used to identify Cs.

a) Pattern Matching: As a baseline heuristic model,
we implemented the REGULAR EXPRESSION (RE) Search
on Ts. Since we consider all sentences in the document as
input corpus, if it describes multiple persons, this model
captures all of the sentences describing a person as Cs.
Individual mentions are differentiated in later stages. For RE,
SIM(qH , s) ∈ {0, 1}. Given the key-phrase qH , the RE
pattern searches for any sentence mentioning it:

[^]*qH[^.]+

b) Similarity using Tokens: Similarity between qH and
s is calculated based on the similarities between tokens w ∈ s
and qH . A single model is used to embed both w and qH into
the same space. We used two different token representation
models for token to query phrase similarity.

SIM(qH , s) = max
w∈s

SIM(qH , w) (6)

(a) Word Embedding. Tokens in each sentence and in the
key-phrase are represented by WORD2VEC [26] embeddings.
If there are multiple tokens in a key-phrase, the average of the
embeddings are used. We use cosine similarity as the distance
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metric. Given uqH and uw are the final embedding vectors for
q and w,

SIM(qH , w) = cos(uqH , uw) =
uqH · uw

∥uqH∥ · ∥uw∥
(7)

(b) Word Synsets. Tokens and key-phrases are represented
by WORDNET [19] synsets in NOUN form. For similar-
ity/distance metric, we used the Wu-Palmer similarity [27].
Given the synsets of q and w are sqH and sw,

SIM(qH , w) = wpdist(sqH , sw) (8)

c) Classification Model: The similarity search problem
is re-designed as a classification problem where the sentences
are considered as input sequences, and the key-phrases are
considered as labels. The probability of sequence s belonging
to a class qH is then considered as the similarity between a
sentence and a key-phrase. To that end, following Yin et al.
[28], we used pre-trained natural language inference (NLI)
models as a ready-made zero-shot sequence classifier. The
input sequences are considered as the NLI premise and a
hypothesis is constructed from each key-phrase. For example,
if a key-phrase is clothes, we construct a hypothesis "This
text is about clothes". The probabilities for entailment and con-
tradiction are then converted to class label probabilities. Then,
both the sequence and the hypothesis containing the class label
are encoded using a sentence level encoder Sentence-BERT
[29] (SBERT). Finally, we use the NLI model to calculate the
probability P . Given SBERT embedding of a sequence s is
denoted with Bs,

SIM(qH , s) = P (s is about qH | Bs, BqH ) (9)

d) Stacked Models: While RE search relies on specific
patterns and returns exact matches, the other models calculate
a soft similarity, 0 ≤ SIM(qH , s) ≤ 1. Hence if initial results
from RE search returns no result for all the key-phrases we use
WORDNET or SBERT model to identify semantically similar
sentences to the key-phrases.

B. Iterative Search for Properties

We now formally describe the POSID algorithm, which
uses the models described in Section IV-A in the first stage. We
start with the observations that led to the POSID algorithm.

a) Observations: We proposed POSID based on the
following observations:

OIV.1 Common to OIII.5, object-properties have single and
multiple value contrasts.

OIV.2 Some properties follow specific patterns such as
GENDER = {male, female, man, woman,
binary, non-binary, ...}, whereas some
properties have variable values, as shown in OIII.6.

OIV.3 Adjectives (ADJ) are used for naming or describing
characteristics of a property, or used with a NOUN
phrase to modify and describe it.

OIV.4 Property values can span multiple tokens, but they
tend to be consecutive.

OIV.5 Property values for CLOTHES generally include the
color, a range of colors, or a description of the
material.

OIV.6 CLOTHES usually is described after consecutive to-
kens with VERB tags, VDG, such as, gerund or
present participle (VBG), past tense (VBD) etc.
If proper syntax is followed, an entity is described
with a VBD followed by a VBG. In most cases,
mentioning wearing.

OIV.7 After a token with VBG tag, until any ADJ or
NOUN tag is encountered, any tokens describing the
set PDCP , {Determiner, Conjunction, Preposition},
or a Participle, or Adverb is part of the property-
name. An exception would be any {participle, ad-
verb, or verb}, PPAV preceded by any {pronouns or
non-tagged tokens}, PPϵ, which ends the mention of
a property-name.

Algorithm 2 presents the pseudocode of the search tech-
nique POSID, which takes the sentences in a document Ts

as input and returns the collection of object-properties and
their set of values, ⟨⟨op, zp⟩⟩ as output. In case of an implicit
mention of clothes, we made an assumption that description
of CLOTHES are always followed by descriptions of GENDER,
RACE, and/or HEIGHT.
Lines 3 - 5 Extract the candidate sentences with the RE-
SEARCH. If results are empty, extract them with semantic or
classification models. Set of key-phrases QH is provided by
the system.
Lines 8 - 10 Iteratively search for all the finite-valued proper-
ties {GENDER, RACE, HEIGHT} in each Cs and append them
to output.
REGEXPROPVAL() is a regular expression matching func-
tion that takes sentence s and property-name op as input, and
outputs 1) property-value zp, if op is a finite-valued property,
or 2) partial sentence sp, if op is a variable-valued property.
Each op is mapped to a search-string pattern, sR in T .
Lines 11 - 12 For CLOTHES, REGEXPROPVAL() returns
either a partial sentence sp starting with wearing, or an
empty string. In case of an empty string, keep the remaining
string from Lz after discarding the extracted values from lines
8 - 10.
Lines 18 - 19 If first and second token is verb, it is the start for
the RELATION property. Following OIV.6, ignore consecutive
verbs until another tag is encountered.
Lines 20 - 23 Following OIV.7, capture tokens from a VERB
until any pronoun or non-tag as a free-form property value for
CLOTHES.
Lines 24 - 26 Capture the adjectives as clothes descriptions,
and initialize the next property.
Lines 28-30 For noun descriptors in the value i.e., grey
dress pants, compare the wordnet-synset meaning for color
(COLORsyn) to the noun-token meaning. Since a descrip-
tion is encountered, name-index is re-initialized for the next
property-name.
Lines 31-32 If a noun-phrase is not a color, it is considered
as cloth-name with multiple tokens i.e., dress pants, tank top,
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Algorithm 2 POSID
Input: Collection of Sentences, Ts

Output: Collection of ⟨name, values⟩ pairs, ⟨⟨op, zp⟩⟩, OH

1: fop← {GENDER, RACE, HEIGHT}
2: COLORsyn← SYNSETS(“COLOR”, NOUN)[0]
3: Cs ← EXTRACT-CsRE (Ts , QH )
4: if Cs is ϕ then
5: Cs ← EXTRACT-Csmodel(Ts , QH )
6: OH←− ∅ ▷ Collection of ⟨op, zp⟩ ≡ ⟨name, values⟩ pairs

7: foreach s in Cs do
8: foreach o in fop do
9: Lz= REGEXPROPVAL(s,op)

10: OH .APPEND(op, Lz)
11: sp = REGEXPROPVAL(s, CLOTHES)
12: if sp is ϕ then sp ← s\ Lz

13: Nidx←− ∅ ▷ Index-List for property-name

14: D← ∅ ▷ List for property-values

15: To← TOKENIZE-WORD(sp) ▷ List of tokens from sp

16: Ta← POS(To) ▷ List of ⟨token, POS-tag⟩ from tokens

▷ wi and ti is token and POS-tag at ith index in Ta

17: for (w, t) in Ta do
18: if t1 is VBD then continue
19: if t2 is VBG and t1 is VBD then continue
20: if ti ∈ PDCP ∪ PPAV then
21: if ti ∈ PPAV and ti−1 ∈ PPϵ then
22: break
23: Nidx.APPEND(i)
24: else if ti is ADJ then
25: Nidx←− ∅ ▷ re-initialize name index-list

26: D.APPEND(wi)
27: else if ti is NOUN then
28: Sw← SYNSETS(wi, NOUN)
29: Nidx, D, dcolor=

MATCHCOLOR(Sw , Nidx , D)
30: if dcolor then continue
31: N← wi

32: N← PROPNAME(Nidx , N , Ta)
▷ finalize property-name & assign the values

33: if ti−1 is NOUN and
OH [-1].name == wi−1 then

34: CONCAT(OH [-1].name, wi, " ")
35: else
36: OH .APPEND([N,D])
37: Nidx←− ∅, D← ∅ ▷ re-initialize Lists

38: else
39: break

dark clothing. Populate the property-name by backtracking the
name-index list.
Line 36 If the previous token is NOUN and does not match
the last token of the previous property-name, we consider the
end of the current property description. Finalize the current
property name and value by appending it to the result. Oth-

erwise, in line 34, amend the last inserted property-name by
appending the current token to it.

b) Generalization: Algorithm 2 assumes that the prop-
erty identifier is intended for human-properties. POSID can
be generalized to any object-properties in the text as long
as the property names and type of values are known. The
search string for fixed-valued properties has to be re-designed.
Variable-valued properties following some degree of gram-
matical structure would be covered by the iterative search
pattern in POSID. COLOR will be replaced by the phrase that
describes the properties in the corresponding system. QH ’s
are highly non-restrictive phrases and can be constructed from
entity types or entity names.

V. EXPERIMENTS AND RESULTS

a) Dataset Construction: For our problem domain, we
needed a dataset that did not have similarity or relevance
labels but was compatible with existing property identifiers in
the literature. During our collaboration with the local police
department for the missing person search, we were provided
with incident reports and pedestrian videos from the traffic
cam. For benchmarking our proposed retrieval methods, we
searched for a similar dataset with gold property annotations.
We adopted the MARS (Motion Analysis and Re-identification
Set) person re-identification dataset from [6] for the visual
modalities. MARS consists of 20,478 tracklets from 1,261
people captured by six cameras. There are 16 properties that
are labeled for each tracklet, among which we used - GENDER
(MALE, FEMALE), 9 BOTTOM-WEAR COLORS, and 10 TOP-
WEAR COLORS. For property identifiers in textual modalities,
we build a collection of text data, named InciText dataset
from newspaper articles, incident reports, press releases, and
officer narratives collected from the police department. We
scraped local university newspaper articles to search for ar-
ticles with keywords i.e., investigation, suspect, ‘person of
interest’ and ‘tip line phone number’. InciText provides
ground-truth annotations for 12 properties describing human
attributes with the most common being – GENDER, RACE,
HEIGHT, CLOTHES and CLOTH DESCRIPTIONS (COLORS).
Each report, narrative, and press release describes zero, one,
or more persons.

Using the above-mentioned datasets, we built a novel re-
trieval dataset, MuQNOL. MuQNOL does not rely on explicit
similarity labels and based on the gold property annotations,
we can identify the relevant data objects for the user. User can
specify which properties are important to them and we can
tweak the ‘relevance’ label based on that. The composition
statistics for each modality are:

1) Image (3270/1100/1144),
2) Text (296/178/145), and
3) Video (1454/499/539)

where (*/*/*) stands for the sizes of training/validation/test
subsets.
For developing the ground truth, we ranked the data samples in
ascending order of the mismatched properties. The properties
were chosen depending on the user requirement, and the
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Attr-Only Attr-Value θH qH
Models Precision Recall F1-Score Precision Recall F1-Score

Word2Vec + POSID 0.83 0.38 0.52 0.85 0.35 0.49 0.5 clothes
RE + POSID 0.86 0.82 0.84 0.92 0.82 0.87 X wear
WordNet + POSID 0.93 0.33 0.49 0.89 0.30 0.45 0.9 clothes as noun
SBERT + POSID 0.83 0.49 0.62 0.86 0.45 0.59 0.85 clothes
RE + WordNet + POSID 0.93 0.65 0.77 0.92 0.87 0.90 0.9 clothes as noun
RE + SBERT + POSID 0.87 0.87 0.87 0.92 0.87 0.90 0.85 clothes

Fig. 2: Performance of Different Candidate Sentence Extraction Models based on Clothes Property Identification

Properties CNN
(Resnet50)

3D-
CNN

CNN-
RNN

Temporal
Pooling

Temporal
Attention

Color
Sampling

acc F1 acc F1 acc F1 acc F1 acc F1 acc F1
top-color 75.22 73.98 67.91 65.19 70.54 67.33 74.98 73.13 76.05 74.64 44.65 38.31
bottom-color 73.55 54.09 59.77 36.56 67.71 44.44 71.69 47.84 70.15 46.89 45.26 15.88
gender 90.01 89.71 86.49 76.22 90.07 89.62 91.04 90.63 91.82 91.48 - -
average 79.59 72.59 67.97 59.18 76.11 67.13 79.24 70.53 79.34 71.01 44.96 27.10

Fig. 3: Comparison of Property Identifiers for Videos with Accuracy (acc) and F1 measure on MARS dataset (%)

mismatches were assigned different penalties. In Example 1,
an officer searches in the following order: (1) same gender and
race, (2) same bottom clothing, and (3) same top clothing. The
intuition behind this is if there is a gender mismatch, they are
definitely not the same person. It is possible for a person to
change the top clothing in a short span of time, but it is harder
to change the bottom clothing. So even if there is a mismatch
in top color, there is a chance of it being the same person given
a similar time span and vicinity. Therefore, we set the penalty
for each mismatched property as follows: rcost(TOP-COLOR)
= 1, rcost(BOTTOM-COLOR) = 2, and rcost(GENDER) = 3,
with gender having the highest penalty and hence, the highest
importance. Exact matches are the top most in the ranking
with a zero penalty.

b) Settings: For Word2Vec, we used the 300 dimensional
pretrained model from NLTK [30] trained on Google News
Dataset1. We pruned the model to include the most common
words (44K words). From NLTK, we used the built-in tokeniz-
ers and the Wordnet package for retrieving the synsets and
wu-palmer similarity score. For SBERT implementation, we
used the zero-shot classification pipeline2 from transformers
package using the SBERT model fine-tuned on Multi-NLI
[31] task. For part-of-speech tagging, we used the averaged
perceptron3 tagger model. The manual narratives in the In-
ciText dataset were excluded for property identification task.
Query phrases used for Cs identification are:
qH = { clothes, wear, shirts, pants }.
We follow the original train/test partition of the MARS [6]
dataset for benchmarking the property identifiers in visual
modalities. For models in [32], [33], [34], we formed a

1GoogleNews-vectors-negative300
2zero-shot-classification
3https://www.nltk.org/_modules/nltk/tag/perceptron.html

training batch by randomly selecting 32 tracklets, and then
by randomly sampling 6 frames from each tracklet. During
testing, F frames of each tracklet are randomly split into ⌊Fn ⌋
groups, and the final result is the average prediction result
among these groups. We used a validation set of mutually
exclusive 125 people selected from the training set. For color
sampling, we used the result from the first frame from each
tracklet. We compared three properties across all models -
GENDER, TOP COLOR and BOTTOM COLOR. For the retrieval
model, we only considered the synthetically generated part of
InciText. For Munkres, we used the clapper4 API. We did not
use the local node-node interaction information from simgnn
during the training phase for FemmIR.

Attributes Gender Race Height
Clothes
Attr-only

Clothes
Attr-value

Precision 0.94 0.94 0.72 0.87 0.92
Recall 0.73 0.73 0.57 0.87 0.87
F1-Score 0.82 0.82 0.63 0.87 0.90

TABLE I: Human Attribute Extraction Results

c) Property Identification in InciText dataset: We com-
pared the baseline RE-model with the other approaches in
Section IV-A for finding Cs. Two different set of metrics
were used for the evaluation of CLOTHES identification. (Attr-
only) evaluates how efficiently the model identified all clothes,
and (Attr-value) calculates the performance of the model in
identifying both the attribute and its descriptive values. For
Attr-value, a true positive occurs only when a valid clothes
name and a correct description of that cloth is discovered.
Figure 2 describes the performance of different candidate sen-
tence extraction models based on the performance of CLOTHES

4https://software.clapper.org/munkres/api/index.html
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Query Target EARS FemmIR FGCross-Net

Image Text 0.54 0.40 0.12
Image 0.27 0.27 0.11
Video 0.33 0.29 0.12
All 0.30 0.28 0.11

Text Text 1.0 0.52 0.23
Image 0.37 0.29 0.08
Video 0.46 0.33 0.07
All 0.43 0.31 0.10

Video Text 0.62 0.43 0.09
Image 0.30 0.29 0.11
Video 0.37 0.30 0.31
All 0.34 0.30 0.15
Avg 0.44 0.33 0.13

TABLE II: MAP Performance of FemmIR on MuQNOL

identification. For the baseline, the group of tokens around
wear returned three times better F1-score than any other
qH . With the other models, qH = {clothes} produced the
best score. (RE + SBERT) stacked model performs best with
87% and 90% F1-Scores, for both metrics. Although (RE
+ Wordnet) has a higher precision score of 93% for Attr-
only, it has a low recall score of only 65%, indicating over-
fitting. Based on a property-frequency analysis, we showed the
identification results for the most frequent subset of properties
in OH for InciText. Table I shows the performance of POSID
with (RE+SBERT) for stacked model (lines 3 - 5). For gender
and race, the model showed the efficacy of the chosen search-
pattern with 94% precision score. A recall score of 73% shows
that most people follow similar style for describing gender and
race. For height with only 57% recall score, a rule based model
is not sufficient due to varied styling.

d) Property Identifiers in Visual Modalities: Since
MARS has a large amount of ground truths for person at-
tributes, we compared existing models from the Person Re-
Identification task. From the CNN models, we used the image-
based Resnet50 [35] as the baseline. Due to the temporal
nature of videos, we also compared the 3D-CNN [34], CNN-
RNN [33], Temporal Pooling and Temporal Attention [32]
models. As a heuristic-based model, we chose the color-
sampling model from [20]. Table 3 describes the bench-
marking results for the compared models. Resnet50 performed
significantly better than other models for bottom-color, while
temporal attention worked best for top-color. Considering the
average performance on all attributes, we choose the image-
based CNN model for the retrieval task. Since the properties in
our task are all motion-irrelevant, the video-based extraction
models do not have a large impact on the performance. In
terms of training data and time, color sampling surely has
an advantage. Resnet50 needed 513 minutes and the temporal
attention model needed 1073 minutes for training, whereas
color sampling has zero training time. Color sampling works
by isolating body regions and evaluating pixel values, hence
the presence of sunlight or clouds may have adversely affected
the performance.

e) Retrieval Performance of FemmIR: We compared
FemmIR with EARS [18] and FGCross-Net [36]. SDML [37]
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Fig. 4: (a) Precision-recall curves for the text as query and data
sample modality, (c) Precision-recall curves for the image as
query modality with text and image as data sample modality.

has shown superior performance to other state-of-the-art cross-
modal retrieval models such as ml-CCA [38], ACMR [39],
GSS-SL [10], CMPM+CMPC [40]. Since all of them rely
on class labels and our problem setting does not allow fine-
tuning, we could only compare the models that provided pre-
trained models. SDML does not have any publicly available
pre-trained model. EARS is an exact inference model and
serves best as a baseline model. Since EARS does not require
any training, we only used the test set in MuQNOL. We
formulated the JOIN queries in the EARS method on the
aforementioned properties. The results were a union among the
exact match and partial matches for the individual properties.
We benchmarked EARS with the extracted property values
whereas the gold property annotations were used to create the
annotations for multimodal retrieval results.

For evaluation, we considered cross-modal retrieval tasks as
retrieving one modality by querying from another modality,
such as retrieving text by video query (Video → Text) or,
retrieving image by text query (Text → Image). We also show
the comparison for multi-modality retrieval. By submitting a
query example of any media type, the results of all media
types will be retrieved such as (Image → All, Text → All). We
adopt mean average precision (mAP) as the evaluation metric,
which is calculated on all returned results for a comprehensive
evaluation. We consider data samples with CED < 3 in
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comparison to the query object, as relevant for that query.
This would return contents where persons only with color
mismatches are found.

With an average F1 score of 79.59% for video and
image property identifiers, the mAP scores of image and
video queries are 27%-37%. Text modalities with their high-
performance identifiers get the highest mAP across modal-
ities. This indicates FemmIR’s correlation with the prop-
erty identifier performance. If user have a capable property
identifier, FemmIR performance will increase. Precision-recall
(PR) curves in Figure 4a and 4b show that at lower degrees
FemmIR perform comparably with EARS, but with higher
degrees of recall, the performance degrades. FemmIR performs
significantly better than FGCross-Net without fine-tuning and
shows the difficulty of this task.

VI. RELATED WORKS

Metric Learning. [41], [42] uses hinge rank loss to minimize
intraclass variation while maximizing interclass variation. [15]
minimized the loss function using hard negatives with a variant
triplet sampling, but needs fine-tuning and augmented data.
[16] uses an additional regularization in the loss function
with adversarial learning. [17] enables different weighting on
positive and negative pairs with a polynomial loss function.
FemmIR has similarities to metric learning with the objective
of minimizing the edit distance between two graphs. In con-
trast, FemmIR re-uses pre-extracted properties and does not
require data samples to create positive-negative pairs.

Weakly Supervised Learning. [5], [3] use weak signals
from entity and relationship similarities retrieved from video
captions and text. [18] assumes knowledge of the translation
module which makes it less adaptable to novel modalities. [4]
uses a similarity-based retrieval technique to extract images
with similar subsurface structures. FemmIR also uses a weak
signal approach for ranking relevant samples from multiple
modalities, but the weak labels are constrained to use the pre-
extracted properties and must implicitly maintain the structure
between the entities and relationships.

Semantic Understanding with Encoding Networks. [43],
[44], [45], [46] learns semantically enriched representations
of multi-modal instances by using global and local attention
networks. Similarly, FemmIR uses graph convolutional net-
work [22] to align the most important nodes contributing to the
overall similarity, denoting the most similar properties between
samples.

Content-based Data Discovery. [47], [18], [48], [49], [50],
[51] implement content-based data retrieval by taking user-
provided example records as input and returning relevant
records that satisfy the user intent. Our work shares similarities
to DICE [47], which finds relevant results by finding join
paths across tables within the data source. However, it focuses
on discovering relevant SQL queries from user examples,
whereas FemmIR focuses on finding the relevant content
directly by finding similar object properties. EARS [18] finds
relevant data by applying JOIN queries on the user-required

properties from different modalities. Similar to EARS, we also
assume the knowledge of pre-identified properties. EARS can
scale to petabytes of data, but it needs additional queries to
retrieve soft similarities. The number of SQL queries increases
proportionally to the number of properties in the user query.
Contrary to EARS, we do not assume a common schema for
all modalities and do not require re-training from scratch to
accommodate new modalities.

Although human attribute recognition from videos and
images has been well studied, we believe this is the first
work that focuses on finding them from the text. [52], [53]
used sentence encoders and dense neural networks to combine
lexical and semantic features for finding similar sentences in
electronic medical records and academic writing.

VII. CONCLUSION AND FUTURE DIRECTIONS

We study information retrieval with multimodal (vision and
language) queries in real-world applications, which, compared
with existing retrieval tasks is more challenging and under-
explored. We introduced the problem of mismatch between
the information need and encoder features, along with the
lack of annotated data for multi-modal relevance. To this
end, we presented FemmIR, a framework that uses weak
supervision from a novel distance metric for data objects
and uses explicitly mentioned information needs with ex-
isting system-identified properties. Extensive evaluations on
MuQNOL dataset demonstrate that FemmIR exhibits strong
performance amongst the retrieval models that require fine-
tuning and identifies the relevant data to the user example
without supervised training and additional resources. As a
byproduct, we also demonstrated the efficacy of HART, a
human attribute recognition model from unstructured text,
outperforming the baseline language models. FemmIR has
successfully implemented a missing person use case and is
being updated to provide further assistance to local agencies
in social causes. In the future, we plan to extend FemmIR
to include multi-objective and evolving information needs to
support more real-world use cases.

ACKNOWLEDGMENT

This research is supported by the Northup Grumman Mis-
sion Systems’ Research in Applications for Learning Machines
(REALM) Program.

REFERENCES

[1] M. Luo, Z. Fang, T. Gokhale, Y. Yang, and C. Baral, “End-to-
end knowledge retrieval with multi-modal queries,” arXiv preprint
arXiv:2306.00424, 2023.

[2] Z. Li, J. Tang, L. Zhang, and J. Yang, “Weakly-supervised semantic
guided hashing for social image retrieval,” International Journal of
Computer Vision, vol. 128, no. 8, pp. 2265–2278, 2020.

[3] N. C. Mithun, S. Paul, and A. K. Roy-Chowdhury, “Weakly supervised
video moment retrieval from text queries,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 11 592–11 601.

[4] Y. Alaudah, M. Alfarraj, and G. AlRegib, “Structure label prediction us-
ing similarity-based retrieval and weakly supervised label mappingstruc-
ture label prediction,” Geophysics, vol. 84, no. 1, pp. V67–V79, 2019.

12



[5] K. Solaiman and B. Bhargava, “Open-learning framework for multi-
modal information retrieval with weakly supervised joint embedding,”
2022.

[6] L. Zheng, Z. Bie, Y. Sun, J. Wang, C. Su, S. Wang, and Q. Tian, “Mars:
A video benchmark for large-scale person re-identification,” in European
Conference on Computer Vision. Springer, 2016, pp. 868–884.

[7] K. Solaiman and B. Bhargava, “Feature centric multi-modal information
retrieval in open world environment (femmir),” 2023.

[8] N. Rasiwasia, J. Costa Pereira, E. Coviello, G. Doyle, G. R. Lanckriet,
R. Levy, and N. Vasconcelos, “A new approach to cross-modal multime-
dia retrieval,” in Proceedings of the 18th ACM international conference
on Multimedia, 2010, pp. 251–260.

[9] J. Rupnik and J. Shawe-Taylor, “Multi-view canonical correlation anal-
ysis,” in Conference on Data Mining and Data Warehouses (SiKDD
2010), 2010, pp. 1–4.

[10] L. Zhang, B. Ma, G. Li, Q. Huang, and Q. Tian, “Generalized semi-
supervised and structured subspace learning for cross-modal retrieval,”
IEEE Transactions on Multimedia, vol. 20, no. 1, pp. 128–141, 2017.

[11] W. Wang, R. Arora, K. Livescu, and J. Bilmes, “On deep multi-
view representation learning,” in International conference on machine
learning. PMLR, 2015, pp. 1083–1092.

[12] M. Kan, S. Shan, and X. Chen, “Multi-view deep network for cross-view
classification,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 4847–4855.

[13] Y. Peng, J. Qi, X. Huang, and Y. Yuan, “Ccl: Cross-modal correlation
learning with multigrained fusion by hierarchical network,” IEEE Trans-
actions on Multimedia, vol. 20, no. 2, pp. 405–420, 2017.

[14] Y. Peng, X. Huang, and J. Qi, “Cross-media shared representation by
hierarchical learning with multiple deep networks,” in Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence,
ser. IJCAI’16. AAAI Press, 2016, p. 3846–3853.

[15] F. Faghri, D. J. Fleet, J. R. Kiros, and S. Fidler, “Vse++: Improv-
ing visual-semantic embeddings with hard negatives,” arXiv preprint
arXiv:1707.05612, 2017.

[16] X. Xu, L. He, H. Lu, L. Gao, and Y. Ji, “Deep adversarial metric learning
for cross-modal retrieval,” World Wide Web, vol. 22, no. 2, pp. 657–672,
2019.

[17] J. Wei, X. Xu, Y. Yang, Y. Ji, Z. Wang, and H. T. Shen, “Universal
weighting metric learning for cross-modal matching,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 13 005–13 014.

[18] K. Solaiman, T. Sun, A. Nesen, B. Bhargava, and M. Stonebraker,
“Applying machine learning and data fusion to the “missing person”
problem,” Computer, vol. 55, no. 06, pp. 40–55, jun 2022.

[19] C. Fellbaum, WordNet: An Electronic Lexical Database. Bradford
Books, 1998.

[20] M. Stonebraker, B. Bhargava, M. Cafarella, Z. Collins, J. McClellan,
A. Sipser, T. Sun, A. Nesen, K. Solaiman, G. Mani, K. Kochpatcharin,
P. Angin, and J. MacDonald, “Surveillance video querying with a
human-in-the-loop,” in Proceedings of the Workshop on Human-In-the-
Loop Data Analytics with SIGMOD, 2020.

[21] K. Riesen, M. Neuhaus, and H. Bunke, “Bipartite graph matching for
computing the edit distance of graphs,” in International Workshop on
Graph-Based Representations in Pattern Recognition. Springer, 2007,
pp. 1–12.

[22] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” CoRR, vol. abs / 1609.02907, 2016. [Online].
Available: http://arxiv.org/abs/1609.02907

[23] Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, and W. Wang, “Graph
edit distance computation via graph neural networks,” arXiv preprint
arXiv:1808.05689, 2018.

[24] R. J. Qureshi, J.-Y. Ramel, and H. Cardot, “Graph based shapes
representation and recognition,” in International Workshop on Graph-
Based Representations in Pattern Recognition. Springer, 2007, pp.
49–60.

[25] R. Socher, D. Chen, C. D. Manning, and A. Ng, “Reasoning
with neural tensor networks for knowledge base completion,”
in Advances in Neural Information Processing Systems 26,
C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Q. Weinberger, Eds. Curran Associates, Inc.,
2013, pp. 926–934. [Online]. Available: http://papers.nips.cc/paper/
5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion.
pdf

[26] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” 2013.

[27] Z. Wu and M. Palmer, “Verb semantics and lexical selection,” arXiv
preprint cmp-lg/9406033, 1994.

[28] W. Yin, J. Hay, and D. Roth, “Benchmarking zero-shot text classifi-
cation: Datasets, evaluation and entailment approach,” arXiv preprint
arXiv:1909.00161, 2019.

[29] N. s Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings
using siamese bert-networks,” 2019.

[30] E. Loper and S. Bird, “Nltk: The natural language toolkit,” in
Proceedings of the ACL-02 Workshop on Effective Tools and
Methodologies for Teaching Natural Language Processing and
Computational Linguistics - Volume 1, ser. ETMTNLP ’02. USA:
Association for Computational Linguistics, 2002, p. 63–70. [Online].
Available: https://doi.org/10.3115/1118108.1118117

[31] A. Williams, N. Nangia, and S. Bowman, “A broad-coverage
challenge corpus for sentence understanding through inference,” in
Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers). New Orleans, Louisiana:
Association for Computational Linguistics, Jun. 2018, pp. 1112–1122.
[Online]. Available: https://www.aclweb.org/anthology/N18-1101

[32] Z. Chen, A. Li, and Y. Wang, “Video-based pedestrian attribute
recognition,” CoRR, vol. abs/1901.05742, 2019. [Online]. Available:
http://arxiv.org/abs/1901.05742

[33] N. McLaughlin, J. M. Del Rincon, and P. Miller, “Recurrent convolu-
tional network for video-based person re-identification,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2016, pp. 1325–1334.

[34] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks
for human action recognition,” IEEE transactions on pattern analysis
and machine intelligence, vol. 35, no. 1, pp. 221–231, 2012.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[36] X. He, Y. Peng, and L. Xie, “A new benchmark and approach for
fine-grained cross-media retrieval,” in Proceedings of the 27th ACM
international conference on multimedia, 2019, pp. 1740–1748.

[37] P. Hu, L. Zhen, D. Peng, and P. Liu, “Scalable deep multimodal learning
for cross-modal retrieval,” in Proceedings of the 42Nd International
ACM SIGIR Conference on Research and Development in Information
Retrieval, ser. SIGIR’19. New York, NY, USA: ACM, 2019, pp. 635–
644. [Online]. Available: http://doi.acm.org/10.1145/3331184.3331213

[38] V. Ranjan, N. Rasiwasia, and C. Jawahar, “Multi-label cross-modal
retrieval,” in Proceedings of the IEEE international conference on
computer vision, 2015, pp. 4094–4102.

[39] B. Wang, Y. Yang, X. Xu, A. Hanjalic, and H. T. Shen, “Adversarial
cross-modal retrieval,” in Proceedings of the 25th ACM international
conference on Multimedia, 2017, pp. 154–162.

[40] Y. Zhang and H. Lu, “Deep cross-modal projection learning for image-
text matching,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 686–701.

[41] V. E. Liong, J. Lu, Y.-P. Tan, and J. Zhou, “Deep coupled metric learning
for cross-modal matching,” IEEE Transactions on Multimedia, vol. 19,
no. 6, pp. 1234–1244, 2016.

[42] A. Frome, G. Corrado, J. Shlens et al., “Devise: A deep visual-semantic
embedding model,” in Advances in Neural Information Processing
Systems, vol. 26, 2013.

[43] K.-H. Lee, X. Chen, G. Hua, H. Hu, and X. He, “Stacked cross attention
for image-text matching,” in Proceedings of the European Conference
on Computer Vision (ECCV), 2018, pp. 201–216.

[44] K. Li, Y. Zhang, K. Li, Y. Li, and Y. Fu, “Visual semantic reasoning
for image-text matching,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 4654–4662.

[45] Y. Song and M. Soleymani, “Polysemous visual-semantic embedding
for cross-modal retrieval,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019, pp. 1979–1988.

[46] S. Sah, S. Gopalakrishnan, and R. Ptucha, “Aligned attention for com-
mon multimodal embeddings,” Journal of Electronic Imaging, vol. 29,
pp. 023 013 – 023 013, 2020.

[47] E. K. Rezig, A. Bhandari, A. Fariha, B. Price, A. Vanterpool,
V. Gadepally, and M. Stonebraker, “Dice: Data discovery by example,”
Proc. VLDB Endow., vol. 14, no. 12, p. 2819–2822, jul 2021. [Online].
Available: https://doi.org/10.14778/3476311.3476353

13

http://arxiv.org/abs/1609.02907
http://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion.pdf
http://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion.pdf
http://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion.pdf
https://doi.org/10.3115/1118108.1118117
https://www.aclweb.org/anthology/N18-1101
http://arxiv.org/abs/1901.05742
http://doi.acm.org/10.1145/3331184.3331213
https://doi.org/10.14778/3476311.3476353


[48] R. Gasser, L. Rossetto, and H. Schuldt, “Multimodal multimedia
retrieval with vitrivr,” in Proceedings of the 2019 on International
Conference on Multimedia Retrieval, ser. ICMR ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 391–394.
[Online]. Available: https://doi.org/10.1145/3323873.3326921

[49] S. M. Sarwar and J. Allan, “Query by example for cross-lingual
event retrieval,” in Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in Information
Retrieval, ser. SIGIR ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 1601–1604. [Online]. Available:
https://doi.org/10.1145/3397271.3401283

[50] S. Palacios, K. Solaiman, P. Angin, A. Nesen, B. Bhargava, Z. Collins,
A. Sipser, M. Stonebraker, and J. Macdonald, “Wip - skod: A framework
for situational knowledge on demand,” in Heterogeneous Data Manage-
ment, Polystores, and Analytics for Healthcare, V. Gadepally, T. Mattson,
M. Stonebraker, F. Wang, G. Luo, Y. Laing, and A. Dubovitskaya, Eds.
Cham: Springer International Publishing, 2019, pp. 154–166.

[51] M. Lazaridis, A. Axenopoulos, D. Rafailidis, and P. Daras, “Multimedia
search and retrieval using multimodal annotation propagation and
indexing techniques,” Signal Processing: Image Communication,
vol. 28, no. 4, pp. 351 – 367, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0923596512000756

[52] Q. Chen, J. Du, S. Kim, W. J. Wilbur, and Z. Lu, “Combining rich
features and deep learning for finding similar sentences in electronic
medical records,” Proceedings of the BioCreative/OHNLP Challenge,
pp. 5–8, 2018.

[53] C. L. GOH and Y. LEPAGE, “Finding similar examples for aiding
academic writing using sentence embeddings,” 2020.

14

https://doi.org/10.1145/3323873.3326921
https://doi.org/10.1145/3397271.3401283
http://www.sciencedirect.com/science/article/pii/S0923596512000756

	Introduction
	Preliminaries & Problem Definitions
	Problem Definitions
	Property Identification from Unstructured Text


	MULTIMODAL INFORMATION RETRIVAL
	Graph Representation for Data Sample
	Similarity Label Generation with Content Edit Distance
	Approximate CED Inference
	FemmIR algorithm

	Human Attribute Recognition from Unstructured Text (HART)
	Candidate Sentence Extraction
	Iterative Search for Properties

	Experiments and Results
	Related Works
	Conclusion and Future Directions
	References

