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ABSTRACT

The availability of abundant multimodal data, including textual, visual, and sensor-based

information, holds the potential to improve decision-making in diverse domains. Extract-

ing data-driven decision-making information from heterogeneous and changing datasets in

real-world data-centric applications requires achieving complementary functionalities of mul-

timodal data integration, knowledge extraction and mining, situationally-aware data recom-

mendation to different users, and uncertainty management in the open-world setting. To

achieve a system that encompasses all of these functionalities, several challenges need to

be effectively addressed: (1) How to represent and analyze heterogeneous source contents

and application context for multimodal data recommendation? (2) How to predict and

fulfill current and future needs as new information streams in without user intervention?

(3) How to integrate disconnected data sources and learn relevant information to specific

mission needs? (4) How to scale from processing petabytes of data to exabytes? (5) How

to deal with uncertainties in open-world that stems from changes in data sources and user

requirements?

This dissertation tackles these challenges by proposing novel frameworks, learning-based

data integration and retrieval models, and algorithms to empower decision-makers to extract

valuable insights from diverse multimodal data sources. The contributions of this disserta-

tion can be summarized as follows: (1) We developed SKOD, a novel multimodal knowledge

querying framework that overcomes the data representation, scalability and data complete-

ness issues, while utilizing streaming brokers and RDBMS capabilities with entity-centric

semantic features as an effective representation of content and context. Additionally, as part

of the framework, a novel text attribute recognition model called HART was developed, which

leveraged language models and syntactic properties of large unstructured texts. (2) In the

SKOD framework, we incrementally proposed three different approaches for data integration

of the disconnected sources from their semantic features to build a common knowledge base

with the user information need: (i) EARS: A mediator approach using schema mapping

of the semantic features and SQL joins were proposed to address scalability challenges in

data integration; (ii) FemmIR: A data integration approach for more susceptible and flexible
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applications, that utilizes neural network-based graph matching techniques to learn coor-

dinated graph representations of the data. It introduces a novel graph creation approach

from the features and a novel similarity metric among data sources; (iii) WeSJem: This ap-

proach allows zero-shot similarity matching and data discovery by using contrastive learning

to embed data samples and query examples in a high-dimensional space using features as a

novel source of supervision instead of relevance labels. (3) Finally, to manage uncertainties

in multimodal data management for open-world environments, we characterized novelties

in multimodal information retrieval based on data drift. Moreover, we proposed a novelty

detection and adaptation technique as an augmentation to WeSJem.

The effectiveness of the proposed frameworks, models, and algorithms was demonstrated

through real-world system prototypes that solved open problems requiring large-scale human

endeavors and computational resources. Specifically, these prototypes assisted law enforce-

ment officers in automating investigations and finding missing persons.
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1. INTRODUCTION

1.1 Background and Motivation

In recent years, the proliferation of data from various sources has presented both oppor-

tunities and challenges in decision-making processes. The availability of multimodal data,

which includes textual, visual, and sensor-based information, has the potential to provide

valuable insights and improve decision-making in diverse domains such as law enforcement,

urban planning, social applications, and public safety. However, effectively harnessing the

wealth of information contained within these multimodal data sources poses significant chal-

lenges.

Traditional decision-making systems often struggle with the heterogeneity and incom-

pleteness of data from multiple sources. The integration and extraction of decision-making

information become complex due to differences in data formats, feature and annotation mis-

match, and variations in data schema and types. Additionally, decision-making in open-world

environments requires systems that can adapt to uncertainties, including changes in data

sources, evolving user needs, dynamic or out-of-distribution data, and unexpected events.

Existing literature in multimodal information retrieval or recommender systems has made

progress in addressing some of these challenges by integrating data sources through correla-

tion learning, metric learning, and autoencoders. However, these approaches have limitations

in terms of domain generalization, lack of relevance labels, and restricted environments. As

a result, data-driven decision making still faces significant challenges in real-world scenarios.

The motivation behind my work was to address the aforementioned challenges and enable

the extraction of data-driven decision-making information in open-world environments. The

ability to utilize all available and relevant information continuously obtained from multiple

sources, while adapting to uncertainties, is crucial for decision-makers in various domains.

By developing novel frameworks, retrieval models, and integration algorithms, we aim to

empower decision-makers with accurate, timely, and context-specific information for effective

decision-making processes.

To achieve this goal, we propose novel knowledge extraction framework that incorporate

learning-based models and similarity metrics along with novelty characterization of multi-
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modal information retrieval. These frameworks overcome the limitations of existing systems

and provide decision-makers with a comprehensive and adaptable solution for extracting

decision-making information. Our research focuses on advancing the state-of-the-art in mul-

timodal data integration, relevance learning, scalability, and uncertainty management.

First, we propose a novel on-demand situational knowledge extraction framework that

leverages streaming and RDBMS platforms and combines their functionalities in a cohe-

sive manner. This framework addresses the challenges of heterogeneous and missing data

sources, scalability, data integration, and effective data representations. In addition, we de-

velop attribute recognition models from unstructured texts to enable fine-grained information

processing and build prototypes that assist end users with their specific mission needs. Fur-

thermore, we introduce two learning-based data integration models to overcome challenges

related to approximate and ranked matching, unavailability of relevance labels, and the lack

of domain experts. These models provide solutions for effective data integration in decision-

making processes. Finally, we develop novel uncertainty management techniques to enhance

the accuracy and adaptability of decision-making systems. By creating novelty detection

and adaptation techniques for data retrieval models, our aim is to provide decision-makers

with a deeper understanding of the data and enable effective decision-making in uncertain

scenarios.

Through these contributions, our research endeavors to provide decision-makers with

comprehensive and adaptable solutions for extracting decision-making information from di-

verse multimodal data sources. By addressing the challenges of heterogeneous and missing

data sources, scalability, data integration, and uncertainty management, we strive to enhance

decision-making processes in dynamic and uncertain scenarios.

1.2 Dissertation Contribution

This dissertation aims to accomodate the following statement:

Utilize all available, relevant information obtained from multiple sources to autonomously

and continually provide decision making information that is specific to application needs,

while being able to adapt to uncertainties in a open-world environment.
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Through our research in this work, we have made progress towards extraction of data-

driven decision making information in open-world environment from ever-increasing multi-

modal data. Our main contributions fall into the following categories.

1.2.1 Decision Making Information Extraction from Multimodal Data

In this work, our focus was to tackle the challenges of heterogeneous and missing data

sources, while discovering appropriate representations of the content and context for the data

integration task. To that end, we proposed a novel framework for situational knowledge ex-

traction and dissemination with high level semantic features for the content and context

representation and as an input to a multimodal query engine (Section  1.2.1.a ). We pro-

posed three different data integration approaches as part of the multimodal query engine for

knowledge modeling (Section  1.2.2 ). We augmented our proposed framework with a novel

attribution extraction model for unstructured text as part of the multimodal query engine

(Section  1.2.1.c ), while building a real-world application prototype for police detectives to

help conduct investigations (Section  1.2.1.b ).

1.2.1.a Situational Knowledge Query Engine Framework

First, we proposed a novel framework for the delivery of multimodal decision making

information from all available and incoming data sources, solving the challenges of scalability

and data completeness of real-world applications. Our contributions are as follows.

1) SKOD is a scalable, real-time, on-demand situational knowledge extraction and dis-

semination framework that processes streams of multi-modal data utilizing publish/-

subscribe stream engines and a multimodal query engine for data integration and

relevance learning using semantic features.

2) SKOD proposes using high level semantic features to represent heterogeneous source

content and mission context for multimodal data recommendation.

3) Novel multimodal query engine that continuously builds a multi-modal relational

knowledge base using SQL queries.
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4) SKOD pushes dynamic content to relevant users through triggers based on modeling

of users’ interests, solving the issue of incomplete data and information need over time.

5) We implemented a prototype of the proposed framework solving the use-case of Urban

Information System with dataset collected from Cambridge, MA.

1.2.1.b Novel Use Case for West Lafayette Police Department

We worked with the West Lafayette police department to solve a novel use-case of

Surveillance Video Querying Engine with Human-in-the-Loop, using our proposed Situa-

tional Knowledge Query Engine. Our contributions are as follows.

1) Novel system prototype for Surveillance Video Querying Engine with Human-in-the-

Loop with Police Department from Chesterfield, NH and West Lafayette, IN.

2) Evaluation of scalability capabilities of the proposed knowledge extraction framework.

3) We proposed augmentation techniques on top of existing object detection frameworks

for video feeds and images for fine-grained system properties, while tackling the chal-

lenges of poor video quality and low data availability.

1.2.1.c Novel Human Attribute Recognition model

To solidify the SKOD framework, we proposed a novel human attribute recognition model

from large unstructured text which leverages pattern-matching techniques and contextualized

language models while exploiting the syntactic grammatical properties to extract properties

describing a person. This model can be generalized for any object properties, ensuring a

granular level text property identifier for any mission. Our contributions are described as

follows.

1) To the best of our knowledge, this is the first work to explicitly investigate human

attribute extraction from the large unstructured text.
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2) We formally define the task of Human Attribute Recognition from Text based on the

interviews with Police Department. We further divide it into two subtasks, and propose

a novel algorithm for discovery of both the attribute name and the value.

3) In the process, we introduced a fully annotated novel dataset derived from real life and

synthetic investigation reports and press releases.

4) Experiments show our proposed approach performs better than standalone language

models for fine-grained attribute detection.

1.2.2 Data Integration and Relevance Learning

After the data preparation and feature learning, the next challenge in data-driven de-

cision making arrives from data integration. Data integration from various sources suffers

from heterogeneity issues from differences in feature names that hold similar data, annota-

tion mismatch, and variations in data schema and types. Existing multimodal information

retrieval approaches suffer from scalability and domain-specificity issues. To solve that, we

proposed EARS, using a mediator-based approach and semantic mapping to connect discon-

nected data sources through their features in Section  1.2.2.a . Although this can scale upto

petabytes of data due to RDBMS capabilities, it faces issues when some application domains

require approximate matching and ranked results from all incoming data. To tackle that, we

proposed FemmIR where we learned a coordinated graph representation from the semantic

features of the input and query data samples, which maintains the dissimilarity between data

objects as a learning objective (Section  1.2.2.b ). Finally, to solve the issue of lack of labeled

data, we propose WeSJem, a weakly supervised joint embedding model that maps the data

samples and their associated features in a manner that maintains the similarity relationship

based on the features (Section  1.2.2.c ).
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1.2.2.a Applying Schema Mapping and Data Fusion to “Missing Person” Prob-
lem

In this paper, we make the following contributions:

1) Proposed system delivers integrated query results over time using a mediator approach

along with Postgres triggers.

2) A semantic mapping is employed between the mediated schema and the data sources

to query the limited properties-of-interest in real-world applications.

3) The original query-by-example is translated into conjunctive queries among data sources

and a SQL-Join on the task-specific features is performed at run-time to integrate all

the relevant sources to the query example.

1.2.2.b Feature-centric Multimodal Information Retrieval with Graph Match-
ing

In this paper, we make the following contributions:

1) Novel multi-modal information retrieval approach to find multi-media data relevant to

information need expressed as Query-by-Example and Query-by-Properties.

2) The approach leverages a neural-network based graph-matching technique to capture

the interactions between the query example and the streaming data features, with a

weak supervision from a novel distance metric for data samples.

3) Novel edit distance metric, CED, to measure the amount of difference between two

data samples based on their semantic features.

4) We evaluate FemmIR on a real-world application for Missing Persons, with an unanno-

tated dataset and a property-specific information need. We demonstrate that FemmIR

shows similar performance to other retrieval systems [  1 ] while leveraging pre-identified

properties, on a novel multi-media dataset comprised of pedestrian identification and

real-world dataset.
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5) Additionally, we benchmarked property identifiers for the visual modalities to identify

the best model for the downstream retrieval task.

1.2.2.c Weakly Supervised Joint Embedding for Multimodal Information Re-
trieval

Our contributions are summarized as follows:

1) Novel multi-modal joint embedding model which is pre-trained with weak supervision

from semantic features. The model can use existing video and image translation models

along with existing text feature extractors. WesJem can be applied to any application

domain for cross modal retrieval.

2) The multi-task joint objective function is built upon a data information network based

on how different data samples interact with each other via their structural features.

3) WesJem has the flexibility to take into account any user provided features and sim-

ilarity labels during the joint multi-task training. This allows it to be adapted by

application domains which already have extracted features.

4) Preliminary experiments using only topics as features demonstrate our models effec-

tiveness on retrieval and similarity evaluation tasks.

1.2.3 Uncertainty Management in Multimodal Information Retrieval

In static environments, AI systems can follow rigid rules or past experiences in order to

execute certain tasks. However, in dynamic, uncertain real-world environment, unexpected

changes (i.e., novelties) can occur, and the AI system is expected to detect and adapt to

these changes in a timely manner. We need to characterize novelties in AI systems to detect

novelties and act accordingly in non-stationary environments.

To that end, we characterize and formalize novelties in multimodal information retrieval

task in terms of data shift. Proposed framework includes a novelty detection and response

module in terms of our weakly supervised retrieval model, WeSJem. For that, we proposed

a pre-training strategy for handling out-of-distribution inputs with a modular approach. To
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the best of our knowledge, this is the first framework that formalizes novelty for multimodal

retrieval task.

1.3 Dissertation Organization

The rest of this dissertation is organized as follows: Chapter  2 presents a novel framework

for open-world data-driven decision-making information retrieval, while discussing how the

framework handles the challenges of heterogeneous data representation, on-time data de-

livery, storage, and data incompleteness. Section  2.3 introduces a novel attribute detection

model for unstructured text, and section  2.2 introduces augmentations on perception domain

object detection models for open-world decision-making purposes. Section  2.2 also showcases

how we implemented a real-world societal application using our proposed framework.

Chapters  3 –  5 discuss three novel data integration approaches that utilize semantic

features as content representation. Chapter  3 proposes EARS, which relies on semantic

mapping and SQL-JOIN to achieve a scalable and exact data integration model. Chapter

 4 solves the issue of approximate matching by employing a neural network-based graph-

matching approach to perform relevance matching between data samples. Chapter  5 finally

proposes a weakly supervised representation learning model to solve the lack of annotation

problem, by automatically mapping the data samples in a higher embedding space while

maintaining the similarity constraints between data samples in terms of their features.

Chapter  6 discusses how we can handle uncertainties in an open-world environment for

multimodal information retrieval. Finally, chapter  7 concludes the dissertation with a sum-

mary of the main contributions and a discussion of our future plans to complete the AI life

cycle for multimodal data management to perform data-driven decision-making.
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2. DATA-DRIVEN DECISION MAKING INFORMATION

EXTRACTION FROM MULTIMODAL DATA

2.1 Situation Knowledge on Demand (SKOD)

The past decade has witnessed an unprecedented volume of data being generated by

a variety of sources at very high velocity, resulting in the rise of the big data paradigm.

Specifically, the developments in social networks and Internet of Things (IoT) have created a

plethora of multi-modal data sources that generate billions of data records every second, only

a small fraction of which readily translates into useful information. While the availability

of such vast amounts of data has made it possible to build large knowledge bases, on-

demand extraction of highly relevant situational knowledge for specific missions from those

heterogeneous data clouds remains a difficult task for the following reasons:

1. Accurate correlation of data from different resources for billions of data items is a

daunting task;

2. A knowledge base built upon a specific ontology may not cater to the needs of a mission

when additional mission requirements/user interests are defined later;

3. The storage of the most relevant data in the knowledge base is essential to avoid

performance degradation with growing data;

4. Generalization of knowledge bases irrespective of mission needs is a challenge.

Many critical missions will require real-time targeted dissemination of information to

interested parties as information becomes available. Achieving high-performance, accurate

information extraction and propagation requires

1. accurate modeling of the different users’ interests;

2. application of intelligent filters on streaming data to capture and correlate the most

relevant aspects;

3. triggers for communicating the gathered information to the interested parties.
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In this section, we propose SKOD, a framework for situational knowledge on demand,

which provides high-performance real-time analysis of streaming data of multiple modalities

from different sources to dynamically and continuously build mission-specific knowledge bases

for assistance in decision making. In order to capture data most relevant to user needs, SKOD

uses past user query patterns to construct the knowledge base.

Our approach provides a scalable solution for modeling different user interests over vast

amounts of data while allowing flexibility for future incoming data. Additional interests

can immediately be integrated by defining new queries on the knowledge base. SKOD

currently handles pattern extraction from streaming video and text data, but the extensible

architecture allows facile integration of additional data modalities such as audio, sensor data,

signals, and others.

2.1.1 Example Application Scenario

In order to clearly illustrate the objectives and operation of SKOD, we describe an ex-

ample application scenario of the system in this section. Let us consider a city information

system, which provides access to multiple agents (e.g., police, public works department,

citizens, emergency personnel, homeland security) with varying missions, hence varying in-

formation needs. In such a system, while the police would be interested in patterns such as

unsafe lane changes, locations visited by a suspicious person, to name a few; the public works

department would be interested in patterns such as potholes and occluded street signs. An

example query to be submitted to this system by a police officer is:

Q1: List cars parked next to fire hydrants illegally today.

To answer Q1, we will require detecting cars and fire hydrants in video frames and

tweets, given the available data sources are city surveillance cameras and Twitter. The

query response will provide information that the policeman will always be interested in,

therefore as new data streams in, patterns matching the query should be communicated to

the policeman and other police officers as well, due to the similarity of their profiles to the

user submitting the query. A different user of the system (a firefighter) can later submit Q2:

Get locations of leaking fire hydrants. While this query will be able to utilize the knowledge
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base created in response to Q1, it will build upon it to find patterns of the act leak in both

data sources as they stream additional data to the system.

2.1.2 SKOD System Architecture

The SKOD architecture consists of three large modules - 1) streaming platform to handle

the vast amount of heterogeneous incoming data, 2) multi-modal query engine to model the

user interest based on their previous queries and 3) the front end with the indexing layer. In

Figure  2.2 , we show an overview of SKOD’s architecture. We will describe a more detailed

overview of the architecture for “finding missing person” use case in Section  3.3 , as shown

in Figure  2.1 . We describe the three primary modules below.

Feature Extraction 
(ML/NLP)

NLP (Text): Pattern Recognition, 
Question Answering, TL, LDA/LSI, 

Word2Vec, SBERT

Data type Processors

Vision (Video): YOLO, Color 
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1

2
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Feature Indexed Data
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3

54

Schema Mapping and Fusion 
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Figure 2.1. Detailed Architecture of SKOD for “finding missing person” Use Case.

2.1.2.a Streaming Broker

Due to the latency-sensitive set of applications that SKOD aims to tackle to consume

data from heterogeneous sources, this work relies on Apache Kafka to expose a real-time
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Figure 2.2. Simplistic view of SKOD Architecture. Left rectangle describes
the streaming data ingestion module. Middle rectangle refers to a Multimodal
query engine which includes data processing, feature extraction, data integra-
tion, and relevance modeling. The green rectangle denotes the data retrieval
module, which includes Triggers to deliver incomplete information need over
time. This would be morphed into more detailed form in later chapters.

stream processing pipeline. Apache Kafka is a scalable and fault-tolerant publish-subscribe

messaging system. Kafka achieves the capability to store and process data from multiple

applications (producers) through a topic abstraction system. As an output, multiple appli-

cations can consume the inserted data from all the producers asynchronously and without

any loss. The producers/consumers abstraction allows SKOD architecture to provide real-

time analysis and recommendation capability. Apache Kafka features allow to store the

raw incoming data in Postgres and consume the same data by text and video processing

applications simultaneously.

Currently SKOD architecture consumes both RESTful, and streaming data from Twitter,

incident Reports, image and video feeds through Kafka. SKOD is capable of integrating data

from other real-time applications (i.e., sensor, audio, files, JDBC) through Kafka Clients or

Kafka Connect. Kafka Clients allow to pass and retrieve messages directly to and from

Kafka as long as the message can be converted to bytes. We show a detailed view of SKOD

data streaming pipeline in Figure  2.4 for different types of Twitter data.
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2.1.2.b Multimodal Query Engine

The multimodal query engine consists of several sub-modules. The query engine also

accommodates the unit for feature-analysis of heterogeneous data for identifying personalized

events. The first sub-module consumes the streams of data provided by the streaming broker

and stores them directly in the relational database (Postgres). The second sub-module

extracts features from each mode of data with a separate processing unit. For our current

implementation, we focus on processing video and unstructured text to extract common

features to most domains. In the final module of the multi-modal query engine, SKOD

utilizes users’ SQL queries to build the knowledge base on top of a relational database and

pushes relevant content to users without user intervention. In Figure  2.3 we observe the

structure of the query engine.

Figure 2.3. Multimodal Query Engine Representation utilizing Situational Knowledge.

30



Feature Extraction from Image and Video Streams

Video data represents a separate and unique modality in the SKOD multi-modal sys-

tem for storing and extracting knowledge on demand. Video data comes in large amounts,

unstructured, and raw video is unlabeled, frequently in need of processing, cleaning, and

preparing for the next stage in the data flow.

Video can be viewed as a sequence of frames, where each frame is characterized by its

bitmap that can later be transformed into a multidimensional array or a tensor. The need

to work with extensive digital representations requires specific ways of storing and operating

with the video data, which are different from those of text and structured data. When

the knowledge must be extracted efficiently on demand from the heterogeneous multi-modal

database, there are several challenges to be resolved: (1) Entities from each frame have to

be accessible for user queries, user-defined stored procedures, and event triggers; (2) For

connecting with other modalities in a poly-store environment, these entities must be stored

in a way that they can be matched with the text data and text metadata as well as data from

other modalities for further analysis; (3) There must be a way to obtain entities in an ad-hoc

manner to extract knowledge from streams of video. We resolve these challenges utilizing

two off-the-shelf solutions: Apache Kafka for streaming video in a scalable, fault-tolerant

manner and the YOLO real-time object detection system [  2 ].

In Section  2.2 , we proposed augmentation techniques for video and image feature ex-

traction methods for more granular level features or properties for specific mission needs.

Feature Extraction from Text

Understanding unstructured texts has always been a daunting task. Even with the recent

rise of language models it is hard to parse unstructured social texts into domain-independent

features.

We first preprocess the text using Stanford CoreNLP [  3 ], extract named entities and

co-reference chains. Then we create a separate table in Postgres to save each tweet with

its associated named entities i.e, LOCATION, ORGANIZATION, PERSON, saving them as
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text arrays and associated topic with the tweet. Further, we create another column objects,

which are any words in the tweet except stop words and the ones identified in named entities.

In Section  2.3 , we proposed a novel feature extraction method from unstructured text

for more granular level features for more specific mission needs.

Data Integration and Knowledge Modeling

Unified knowledge representation for all streamed data is required for the query engine

to extract useful knowledge and disseminate information to relevant parties efficiently. In

SKOD, we represent knowledge using relational data and SQL queries on the data, which

persist for the lifetime of the knowledge base and grow with additional user interests. Rep-

resentation of textual data such as tweets and online news is more straightforward through

the extraction of topics and keywords; which can directly be entered into the corresponding

columns in the RDBMS tables. Multimedia data such as video and audio are represented

both with the binary data and the text data extracted as a result of the processing performed

on the binary data. The stored data also includes available metadata for all modalities, such

as timestamp, geolocation, and some others. The metadata is especially useful when corre-

lating multiple forms of data for the same events.

The schemas of the PostgreSQL tables storing the extracted features from the tweet text

and video frames are as follows:

TWEETS(tweet_id INT,

locations VARCHAR(100)[],

objects VARCHAR(100)[],

organizations VARCHAR(100)[],

persons VARCHAR(100)[],

dates VARCHAR(100)[],

times VARCHAR(100)[],

topic VARCHAR(100)[]

created_at DATE)

VIDEO_FRAMES(video_id INT,

frame_id INT,

locations VARCHAR(100),

objects VARCHAR(100)[],

people VARCHAR(100)[],

timestamp DATE,

image BYTEA)
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Here locations, organizations, and persons are different classes of named entities and other

classes can be defined as necessary. Typical attributes are used to facilitate joins between

the tables for data correlation. Attributes in different tables may have different names, but

have commonalities, i.e., timestamp and created_at, or people and persons. Given the initial

knowledge base is built upon Q1 mentioned in Section  2.1.1 , new streams of video data will

result in running the object detector for cars and fire hydrants, and the extracted data will

be inserted into the database. Similarly for streaming Twitter data, tweets that have the

objects car and fire hydrant will be inserted into the relevant table.

Q1 for a system with these two data sources will translate into multiple SQL queries for

the situational knowledge query engine:

SELECT video_id, frame_id

FROM VIDEO_FRAMES

WHERE ‘car’ = ANY(objects)

AND ‘fire hydrant’= ANY(objects)

SELECT tweet_id

FROM TWEETS

WHERE ‘car’ = ANY(objects)

AND ‘fire hydrant’= ANY(objects)

SELECT t.tweet_id, v.video_id, v.frame_id

FROM TWEETS t, VIDEO_FRAMES v

WHERE ‘car’ = ANY(t.objects) AND ‘fire hydrant’ = ANY(t.objects)

AND ‘car’ = ANY(v.objects) AND ‘fire hydrant’ = ANY(v.objects)

AND v.location = ANY(t.locations)

As data from either resource is streaming in, patterns matching these queries will create

triggers for relevant data to be communicated to interested users. Note that the complete

system requires translation of natural language questions into SQL queries through entity

recognition, and constructs for creating all related queries given the tables for different data

sources and their common attributes. Although this initial design is limited to recognition of

objects, a richer knowledge base will require incorporation of activity recognition in videos

and tweets. In chapters  3 –  5 , we described different data integration approaches for more

complex multimodal data matching and knowledge modeling.
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2.1.2.c Data Retrieval and Missing Information Completion

SKOD includes fixed queries on data streams from multiple sources, both separate and

combined. The queries are then stored to build the knowledge base, which in return models

the user interests. SKOD can provide users with information similar to their previous queries

as well as missing information on their existing information. This information is delivered

to the user using trigger events in the relational database. Similar queries and repeated

accesses to similar data are cached to provide better throughput. The front-end queries an

indexing layer based on Lucene indexes to improve throughput.

Elasticsearch is a distributed indexing and search engine. SKOD queries Elasticsearch

through a RESTful API. Moreover, Elasticsearch utilizes Lucene indexes under the hood.

Naturally, Elasticsearch achieves fast response times because it queries an index instead of

querying text or video directly. The basic structure is called Document. Elasticsearch returns

a ranked set of results according to the relevance of the query. SKOD uses Elasticsearch to

rank relevant content to push to the end user.

2.1.3 Prototype Implementation

2.1.3.a Dataset

For unstructured text, SKOD used tweets in this prototype. There are two types of tweet

data available for scraping - RESTful data (historic data) and streaming data. SKOD uses

Twitter search API to collect RESTful data and Twitter streaming API for collecting real-

time tweet streams. It creates independent docker containers for the producers, which can

take tags and timelines as environment variables and run simultaneously. Since there can

be overlap of tweet data from multiple producers, SKOD uses the Kafka streaming platform

to handle the asynchronous, scalable and fault tolerant flow of tweets using the same topic

abstraction for all. After the data is in Kafka, SKOD uses two separate consumers - 1) to

parse and populate Postgres with the tweet and associated metadata, and 2) to pass the raw

tweets to a feature extraction engine. Figure  2.4 shows an overview of the architecture.

34



Figure 2.4. Data Streaming Pipeline from Restful and Streaming tweets to applications.
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Since the city of Cambridge was the point-of-focus for the data used in this work, the

target was to collect a million tweets that discuss events and entities in Cambridge, MA along

with all the metadata from Twitter. Twitter data can be collected by hashtags, user timelines,

geo-data, and general queries. In SKOD, we chose to search by hashtags and user timelines.

For that purpose, about 15 hashtags and 15 user timelines were manually selected after going

through profiles in timelines and descriptions for hashtags. For example, @CambridgePolice

warns about any possible crimes or street law changes, while @bostonfire talks about fire-

related incidents in Boston. At a much broader scale, hashtags like #CambMA include all

tweets by many Cambridge, MA departments. For video dataset, we used dashcam videos

from Cambridge, MA which were collected by uber drivers.

2.1.3.b Experimental Settings

For the implementation of twitter APIs, SKOD uses tweepy.api 

1
 . There is a class method

API() which allows to search by both hashtags and timelines by providing a wrapper for

twitter APIs. The Twitter streaming API is used to download twitter messages in real time.

In Tweepy, an instance of tweepy.Stream establishes a streaming session and routes messages

to StreamListener instance by allowing a connection to twitter streaming API.

High-level Feature Extraction from Text and Video

At the time of the implementation, we had around 80K tweets in Postgres. More were

being accumulated as the module keeps running. The consumers inherit twitter data as

JSON messages. The JSON message is parsed to extract relevant metadata. Different types

of tweets are identified, i.e., original, retweet, and quoted tweets. The tweet text with all

the parsed metadata along with the original JSON message is saved in Postgres. With the

tweet text, we obtain a social network connected by retweets and follows.

We ran the pretrained 7 class NER CRFs from Stanford toolkit [  3 ] to identify the entities.

For topic extraction, SKOD uses the Latent Dirichlet Allocation (LDA) method [  4 ]. We

show the schema of the PostgreSQL table storing the extracted features from the Tweet text
1

 ↑  tweepy 
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in section  2.1.2.b . SKOD wraps the producers and consumers in docker containers. The

producers and consumers take the Kafka hostname and port number as input, along with

the tags and timelines in files.

Figure 2.5. Result of applying the pre-trained neural network to the Cambridge dataset.

In the prototype implementation, SKOD uses YOLO [  2 ], a universal pre-trained neural

network as a tool for object extraction and recognition in the video data. SKOD’s video

processing feature differentiates between 150 object classes. SKOD identifies the objects in

the video on a frame-by-frame basis. The result obtained for a particular video frame in the

collected Cambridge dataset using YOLO is shown in Figure  2.5 . For each processed frame,

the recognized data and metadata are stored in the RDBMS and can be used for queries

that involve the video data modality.
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2.1.3.c Front End and Indexing Layer

The front-end utilizes React  

2
 , which is a JavaScript library for building user interfaces.

Also, we manage states and side effects using the Cerebral  

3
 library. We leverage interactive

maps via the Leaflet  

4
 library integrated with React and Cerebral. SKOD caches the most

frequent queries to provide faster response times. SKOD’s architecture comprises a set of

Node.js and python microservices, i.e., Docker containers. In Figure  2.6 , we demonstrate

the integration of multimodality combining the extracted Twitter data with the front-end

(we utilize GPS coordinates in the Twitter data in GeoJSON format to render the Twitter

data in the Leaflet map). The Tweets come through the Apache Kafka broker. Then the

data is stored in the backend (Postgres). Finally, the Web application queries the indexing

layer and it also watches for new changes utilizing WebSockets SKOD provides an additional

layer of cache storing content in the browser using PouchDB 

5
 similar to the OADA cache

library 

6
 . SKOD future releases include the creation of an elastic cache-layer building a rich

set of network topologies on the edge of the network utilizing Web Browsers with Real-Time

Communication (WebRTC 

7
 ) [  5 ].

2.1.4 Related Work

The rise of the big data paradigm in the past decade has resulted in a variety of approaches

for processing and fusion of data of multiple modalities to extract useful knowledge. Poria et

al. proposed an approach for fusing audio, visual and textual data for sentiment analysis [  6 ].

Foresti et al. introduced a socio-mobile and sensor data fusion approach for emergency

response to disasters [  7 ]. Meditskos et al. developed a system for multi-modal fusion of data

including language analysis results, and gestures captured from multimedia data streams

to provide situational awareness in healthcare [  8 ]. Adjali et al. proposed an approach for

multi-modal fusion of data from sensors to provide ambient intelligence for robots [  9 ]. While
2

 ↑  https://reactjs.org/ 

3
 ↑  https://github.com/cerebral/cerebral 

4
 ↑  https://leafletjs.com/ 

5
 ↑  https://pouchdb.com/ 

6
 ↑  https://github.com/OADA/oada-cache 

7
 ↑  https://webrtc.org/ 
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successful for the specific domains considered, these approaches may not generalize to other

domains.

One application of multi-modal data fusion that has gained increasing interest is visual

question answering. Zhu et al. [  10 ] tackle the visual question answering problem by building

an external knowledge base via iterative querying of the external sources. Their system uses

a neural approach where task-driven memories are actively obtained by iterative queries

and produces the final answer based on these evidences. Although they take a query based

approach for the QA task, their data source is just limited to images. Our approach aims

to build a knowledge base integrating visual, textual, and structured data along with the

relations among them.

Likewise, Wu et al. propose a method combining an internal representation of image con-

tent with information from an external knowledge base to answer complex image queries [  11 ].

Video analytics represents a class of problems related to one of the dimensions of multi-modal

systems exploration, namely efficient and fast video querying. In [  12 ], the authors develop

a declarative language for fast video analytics and enhance it with the engine that accepts,

automatically optimizes and executes the queries in this language efficiently.

While many multi-modal knowledge bases are constructed using learning-based data fu-

sion approaches on large static datasets, query-driven approaches construct knowledge bases

through repeated querying of text and multimedia databases. Nguyen et al. [  13 ] propose

QKBfly, an approach for on-the-fly construction of knowledge bases from text data driven

by queries. QKBfly utilizes a semantic-graph representation of sentences through which

named-entity disambiguation, co-reference resolution and relation extraction are performed.

Bienvenu et al. propose an approach for utilizing user queries and the associated user feed-

back to repair inconsistent DL-Lite knowledge bases [  14 ]. The constructed knowledge bases

will in most cases include inconsistencies and missing information. Probabilistic knowledge

bases have been introduced to handle these inconsistencies by assigning belief scores to facts

in the knowledge bases [ 15 ], [ 16 ], followed by approaches to fuse data from multiple proba-

bilistic bases [  17 ].

Traditional knowledge bases are used for information extraction to answer user queries

as they are submitted. On the other hand, dynamic detection of events on streaming data is
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important for many systems today, due to the need to make users aware of important events

in real time. This has resulted in the development of complex event processing systems for

purposes such as crisis management [ 18 ], to create triggers when streaming data matches

pre-defined patterns [  19 ]. Although these systems provide real-time event notification to

interested parties, their rule base in most cases is fixed, not supporting evolving mission

requirements and users with different interests.

2.1.5 Conclusion and Future Work

In this paper we proposed SKOD, a situational knowledge on demand engine that aims

to provide a generic framework for dynamically building knowledge bases from multi-modal

data to enable effective information extraction and targeted information dissemination for

missions that might have evolving requirements. In order to provide the best run-time per-

formance and accuracy, SKOD uses a query-driven approach to knowledge base construction.

Being query-driven, it is expected to enable effective information retrieval and dissemina-

tion in a variety of fields including law enforcement, homeland defense, healthcare etc., all

building knowledge upon the specific interests of the system users.

The development of SKOD is in progress with components for stream data processing,

feature extraction from video and text data currently in place. Our future work will involve

the development of components for query processing, user similarity modeling, and user

relevance feedback to achieve highly accurate real-time targeted information propagation.

The system will be evaluated with multiple rich multi-modal datasets such as Visual Genome

[ 20 ], COCO [  21 ], YouTube-8M [  22 ], and collected tweets and video data set of our own for

various missions and user types.

2.2 Surveillance Video Querying With A Human-in-the-Loop (SurvQ)

2.2.1 Introduction

Urban areas have many video cameras continuously recording some field of view. There

are fixed cameras on light poles, cameras on city vehicles, and cameras on police personnel. In

addition, there are surveillance cameras on private property, NEST doorbells, interior spaces,
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and many private vehicles. The resulting video streams are crucial for police officers when

solving a range of everyday crimes, but often entail hours of tedious manual examination,

thereby wasting scarce police resources that could be put to better use.

MIT and Purdue researchers have developed a Surveillance Video Querying system,

SurvQ, for surveillance video information. The Chesterfield, NH police department is as-

sisting in providing mission requirements. The West Lafayette, IN police department has

provided video data from cameras in the downtown area plus redacted police dispatch re-

ports. The SurvQ prototype must operate at sufficient scale to handle the West Lafayette

use case (about 200 fixed and mobile cameras), and with an analysis loop that gives rapid

answers to busy law enforcement officers. SurvQ has been designed so it is readily adaptable

to larger deployments and other surveillance applications, such as those found in securing

military bases and disaster recovery.

The Detective In the Loop – The primary focus of SurvQ is to assist humans performing

analytical tasks: that is, police detectives solving crimes and tracking individual suspects.

A typical scenario is an incident report of the form assault reported at time XXX in location

YYY. Suspect is of medium height, wearing jeans and a baseball cap. In this particular

use case from West Lafayette, a suspect matching the description was spotted on a public

bus camera, and that led to his arrest. At the present time, examining video footage is

a manual process for police, and takes hours and hours of time. The request from both

police departments is simple: please help us be more efficient at searching video to track

suspects. The general use case is to find video frames matching a given description in a

given geographic area and time range. Detectives want both an off-line system to search

historical data and a real-time (standing query) facility with short response time (under 60

seconds). An example video frame from a West Lafayette street is shown in Figure  2.7 . In

addition to accepting video queries via direct human input, one way to make detectives more

effective would be to draw query specifications from multiple fused sources, such as tweets

or hand-written police reports.

41



2.2.1.a Surveillance Video and Detective Use Cases

Surveillance video has a collection of notable characteristics. First, it is often fairly low

resolution and therefore difficult to process with sophisticated techniques. Second, the light-

ing is usually poor, because of glare, night conditions, fog, rain, or snow. Third, interesting

objects are often in the background, often facing away from the camera, and are usually

closer to thumbnails than images. Fourth, interesting objects often have properties that are

rarely observed, so obtaining training data may be a challenge for building machine learning

(ML) systems.

The West Lafayette Police department shared the 31 object properties they are most

interested in, and these are shown in Table  2.1 . Several things should be noted about this

property set.

Some properties are relatively rare. For example, smoking is rare on college campuses and

sandals are very rare in December in Indiana. Trying to find rare events by using traditional

machine learning techniques that depend on obtaining large amounts of training data is not

likely to succeed.

Some properties are visually very small. Tattoos in surveillance video are a few pixels.

Of course, this makes recognition difficult.

The set of interesting properties for the police application is surprisingly modest. To

meet their needs, it is easy for computer scientists to hypothesize all the possible data values

that might be extracted from an image. Also, police queries — as we saw in interviews with

police officers and by examining police reports — are driven by a relatively small number

of query types. We believe this fact can help both in designing an efficient system and in

addressing citizens privacy concerns.

Design Considerations – Training data is challenging. In an early experiment we demon-

strated that building a classifier to find people wearing jeans by training on high quality web

images failed to recognize jeans in surveillance video. Hence, transfer learning may not work

well. In addition, many of the properties in Table  2.1 are subjective, and humans may differ

on whether they are present. In other words, the input is very noisy.
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We face problems of scale. West Lafayette has more than 100 cameras. The adminis-

tration wishes to retain all video for months. This quickly becomes a terascale to petascale

problem.

Traditional deep learning is expensive at scale. We anticipate there will be additional

properties of interest to the police beyond those in Table  2.1 . As we have demonstrated, our

transfer learning attempt failed to find jeans. Building a training set for the properties of

Table  2.1 is a tedious manual process. In addition, model runtime at scale is costly. It is not

clear that a deep learning solution is affordable by the City of West Lafayette.

Table 2.1. Video properties of interest to law enforcement
White Black Hispanic Asian
Male Female Tattoos Beard
Bald Hair color Sandals Shoes
Boots Jeans Pants Shorts
T-shirt Baseball hat Jacket Tall
Shorts Walking Running Motorcycle
Bicycle Truck Passenger car Skateboard

Smoking Backpack Headphones

Overall Approach – SurvQ applies property recognizers to the video streams and loads

both video and the properties into a Postgres database  

8
 . To achieve scalability, it can be

optionally be loaded into Citus  

9
 , a parallel multi-node terascale extension of Postgres. The

detective spends his or her time querying and navigating this database. In addition, Purdue

researchers are working on parsing text from tweets and police reports. Data from Bureau

of Motor Vehicles records and exchange of messages among police officers could be included

in the future.

Nontechnical Deployment Concerns – This paper is focused on technical questions, but

there are substantial nontechnical issues around deploying such a system. Some countries

have deployed digital surveillance systems that are totalitarian. Some communities face

overpolicing. Although there are some technical approaches that could possibly limit abuse,

such as recent work in fairness in machine learning models, the challenges are quite broad
8

 ↑  https://www.postgresql.org/ 

9
 ↑  https://www.citusdata.com/ 
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and unlikely to be solved solely by technical measures. It is not possible to address them ad-

equately in a short paper, nor solely from a computing perspective. Obtaining the efficiency

benefits of systems like this one, while limiting the potential for abuse, is a broad challenge

for both the field and society overall.

Organization of this paper – We cover related work in Section  2.2.2 , then discuss basic

SurvQ architecture in Section  2.2.3 . We describe the user’s workflow in Section  2.2.4 and

provide some initial experimental results in Section  2.2.5 .

2.2.2 Related Work

Querying over video is a substantial research problem that draws on work in several areas

of computer science.

Although queryable video monitoring systems have existed for some time, the neural

network revolution in image processing has changed many of the system opportunities as

well as research challenges. Earlier systems were limited to recognizing simpler objects, such

as license plates or faces [  23 ,  24 ]. One line of work assumes that video frames will be processed

by a convolutional neural network (CNN) and is primarily concerned with optimizing their

execution. NoScope [  25 ] offers several optimizations, including training of inexpensive proxy

models and selective frame differencing. The Tahoma [  26 ] system creates multiple physical

representations of videos, combined with creation of proxy models, in order to choose the

most efficient one at query time. BlazeIt [  12 ] offers optimizations for aggregation and limit

queries that again rely on proxy model training. Focus [  27 ] achieves runtime gains with a

combination of inexpensive but low-quality CNNs to build an approximate query index, plus

expensive high-quality CNNs after using the prebuilt index.

Many of these systems assume the existence of CNN-training capacity that would not

be reasonable in our police use case. Their applications also focus heavily on traffic video

use cases (whether fixed-camera or car-mounted) where they must detect (1) many exam-

ples of (2) common and (3) visually clear phenomena for downstream use by (4) analytical

pipelines. In contrast, we are concerned with a human who often needs (1) a single example

of (2) rare and (3) visually obscure phenomena for downstream use by (4) a human-intensive
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investigation. As a result, SurvQ does not have to generate huge quantities of results; it can

exploit the natural duplication of imagery common in video in order to find a small number

of difficult but high-value query results.

Other video query systems focus on traditional systems-centric optimization methods.

SVQ (Streaming Video Queries) [ 28 ] is a system for running declarative SQL-style video

stream queries, with a focus on counts and spatial constraints on objects in a frame. It

optimizes query execution by applying a set of inexpensive filters (such as object counts)

on video frames before running expensive object detection algorithms, thereby eliminating

frames that have low potential of being a match for the query. Optasia [  29 ] is a large-

scale relational video query processing system that focuses on surveillance camera data. Its

optimizations mainly focus on deduplicating work and choosing chunks for parallelization.

Some of its approaches might be useful for SurvQ. VideoStorm [  30 ] is an analytics system

that uses a compute cluster to process thousands of concurrent analytical queries. It is

primarily concerned with scheduling and resource allocation questions around those queries.

Some researchers have focused on detecting a larger set of items in video imagery. The

Panorama system [ 31 ] represents the problem of unknown objects as an unbounded vocab-

ulary problem. This system uses an ML-heavy approach that asks users to manually label

unknown objects before automatically retraining novel image classifiers. This is an interesting

human annotation problem, but is both computationally heavyweight and likely unnecessary

in a concrete application with a relatively fixed set of objects. Techniques such as zero-shot

[ 32 ] and one-shot [  33 ] learning have been proposed for supporting new object properties, but

they require significant manual intervention for model retraining as well as the provision of

metadata and/or more labels, i.e., identifying more object properties. As video surveillance

applications usually have time-starved and non-technical users, these techniques are difficult

to implement.

All of the above systems focus on the data system, without extensive attention paid to

the human in the visual analytical loop.
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2.2.3 Architecture

The architecture of SurvQ is divided into ingestion and retrieval systems. These two

systems may be operating in parallel.

2.2.3.a Data Ingestion

Figure  2.8 shows the initial data ingress step. SurvQ consumes video feeds in real time

or retrospectively. When video data arrives at the Video Server, SurvQ archives it in storage

and then applies a a pipeline of processing steps:

1. Video is converted to MP-4 (if it is not already captured in this format) and down-

sampled to one frame per second (there is no sense running property identification

more often than this, and we may be able to run less frequently).

2. YOLO [ 2 ] is used to identify people objects in each frame. YOLO was chosen because

it is very efficient at run time and has the best chance of keeping up with the large

number of video streams. YOLO also has built-in detection for some of the properties

from Table  2.1 , for example bicycles.

3. Each YOLO-detected object is then further examined to discern its object properties,

initially the features in Table 1.

2.2.3.b Granular-level Property Identification in Videos

Property identification is performed using three different approaches:

• Color analysis. The combination of YOLO class and some color analysis can yield a

simple but effective property detector. We have segmented all YOLO-detected person

objects into sections (e.g. lower half, upper 10% etc.). If the dominant color of the

lower half is blue then chances are the person is wearing jeans. Between shape analysis,

color analysis and common sense reasoning, we can detect about half of the objects in

Table  2.1 .
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• Traditional deep learning. Purdue is applying traditional deep learning to the

object property identification problem. This requires tagging imagery from West

Lafayette with labels to construct training data. We have found that a suitable de-

tector requires O(1000) images to be successful. Student labor is being used for this

substantial task.

• Transfer learning. Purdue trained a CNN-based attribute detection classifier on

the PA-100K dataset [  34 ]. PA-100K dataset contains 100,000 pedestrian images from

real outdoor surveillance cameras annotated with 26 attributes. We use YOLO as

our backend before the frames are passed to the pretrained classifier. We created a

mapping between 26 features from PA100K dataset and 31 features of interest in Table

 2.1 based on whether they are visually synonymous: for example, short sleeves in the

PA-100K dataset is mapped to T-shirt in our taxonomy. All of the features from

PA100K are similar to some properties of interest to us, and we could find an exact

mapping for more than one-third of the properties.

Currently, all three classifiers are being actively improved. However, a few results are

already apparent. First, color/shape analysis works well and has the great advantage that

training data is not required. Second, transfer learning is proving difficult, because of the

variance in quality of frames between training data set and surveillance video. This same

issue was a problem in transfer learning to identify jeans. Our experience is that data derived

from dissimilar video is not useful in helping to solve our problem. We are hopeful, however,

that our classifiers trained on West Lafayette video will work successfully on New Hampshire

video. Lastly, training a novel deep learning system is a challenge because of the amount of

training data required. Without a ready data set of tagged images, generating training data

is a very expensive proposition. Without student labor, the cost could well be prohibitive.

Active Learning and Color Management – Active learning is well understood in a deep

learning context. However, of particular interest to us is feedback to our color algorithms

for automatic improvement. Colors perceived by the camera can be influenced by the time

of day, weather, and other physical properties in the scene so that simply detecting "blue"

on a person figure requires some adjustment. To perform color analysis in a segmented area,
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the RGB value at each pixel is retrieved. The set of RGB values for the standard colors

(red, green, yellow, etc.) is defined in a reference color map. To infer the color of a pixel, we

calculate the color distance to each standard color and choose the closest one  

10
 .

The color for any region of interest was then found by majority vote. To incorporate

active learning, we plan to test moving the reference colors in color space based on user

feedback.

Finally, the output of the classifiers is stored in Postgres along with suitable metadata,

and pointers to the archived raw video.

2.2.3.c Data Retrieval with Incomplete Data and Meeting Information Needs
Over Time

The right-hand side of Figure  2.8 shows the simple architecture we use for querying

video. At run time, our system expects a user query, most likely derived from information in

a police incident report, such as the West Lafayette document seen in Figure  2.9 . (We also

have code that parses the actual incident reports to extract the description of the incident.)

The user’s query is converted to SQL and defined as a trigger to the Postgres DBMS. In this

way, a historical query is run to find the data of interest in the past, and a Postgres trigger

will find data of interest as it is loaded into the DBMS in the future. Section  2.2.4 describes

in detail the query and interaction cycle from the user’s perspective.

We currently ingest parsed tweets into the database. In the future, we expect to search

both video and tweets for the properties of interest in Table  2.1 . Note that the scope of a

trigger system can be multiple tables, so joining multiple data sources is straightforward.

2.2.4 User Workflow: The Police Detective In The Loop

Police detectives receive information about events they need to investigate in the form

of an incident report, like that of Figure  2.9 . These reports contain information about

the event that occurred, often including details of any suspects involved. We have two

interfaces to obtain data about an incident. The first is a form-based UI shown in Figure
10

 ↑  https://www.compuphase.com/cmetric.htm 
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 2.10 . With it, detectives can input the incident details easily. The form has fields to filter on

time, location and suspect characteristics. The results are translated into SQL queries and

triggers, allowing non-programmers to easily interact with the system. The second system

automatically parses West Lafayette incident reports to obtain required information.

An example of the analytical interaction steps a detective may take with SurvQ is shown

in Figure  2.11 . In (1) the user will visit the creation page for the incident and enter the

appropriate details. Upon submission, the user is redirected to an investigation page that

can be revisited at any time. The investigation page contains all the details relevant for the

incident. This includes event information, processing progression and matching video clips.

In (2) there are three possible viewpoints the user can choose:

• List: Displays all returned results compactly so the user can quickly view all matches.

• Map: Aggregates video that occurred in close proximity and displays the resulting

clusters on a map

• Timeline: Aggregates video that occurred close in time and displays the bucketed

groups in order

These three different viewpoints are shown in Figures  2.12 and  2.13 . In step (3), the

investigator will search through the returned video. When an investigator finds a video

useful, they mark it as important. Each viewpoint can apply a filter to display only marked

video. In step (4), after they’ve gone through the video, they can select a different viewpoint

to make additional passes over the video data. This search-and-mark process comprises much

of the detective’s analytical work. In the future, we believe that moving cameras (mounted,

say, on a police car) may be a potential source of novel video data, and will pose new

interaction challenges for investigators attempting to find suspects in the video database.

Additional video may enter the system after initial creation and investigation. Investiga-

tors following an incident in real time can use SurvQ to subscribe to long-running queries

and thereby receive alerts about new data. Postgres triggers are made on incident creation

to check for property matches. Users can see new notifications in the investigation view and

home page for easy viewing and access.
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2.2.5 Runtime Performance: Scalability of Data Ingestion and Retrieval

We have run our ingest system and our query system in parallel on real and simulated

queries and data. To assess performance, we consider SurvQ as three components: video

ingest, YOLO processing, and database activity. Our goal was to make SurvQ performant

enough to handle an urban camera deployment, including the West Lafayette use case.

We maintain a collection of web servers to handle video upload. Upsteam processing

must generate video in 1-minute MP-4 files. Future work would be required to handle other

video formats. A low cost web server can support 4-5 concurrent video feeds.

YOLO processing runs well on a GPU-equipped server. A single server can perform

object recognition and color analysis in approximately 15 seconds per 1 minute of video.

Thus, each YOLO processing server can handle around 4 incoming feeds.

Our major performance concern was how our use of trigger functions in Postgres would

scale. In SurvQ, a trigger function for each incident is run every time YOLO results are

inserted. We run YOLO on video at a rate of 1 frame per second, or 60 frames per minute.

West Lafayette surveillance data averages 5 persons per frame. Since the West Lafayette use

case has at most 200 video sources, we would expect our system to receive around 60 * 5 *

200 = 60000 inserts per minute. We need to be able to handle these insertions in under 60

seconds worth of time. Figure  2.14 shows that trigger invocation can easily keep up.

As such, the dominant cost for West Lafayette is the number of YOLO servers to process

the incoming video load. Given their computing budget, it is not cost effective to perform

ingest-time property identification on all video. Instead we have implemented resource-

available classification via a priority system. In this way, highest priority feeds are classified

at ingest time, and deferred processing is performed when necessary. Of course, when pro-

cessing is deferred, it is performed at query time. Hence, in the worst case, only video

relevant (in space and time) to an incident is classified. Our current system assigns a prior-

ity to a video feed equal to the number of incidents it matches in space and time. We expect

to investigate more complex schemes in the future.

In our opinion, deferred processing is more reasonable than trying to do multi-step iden-

tification, as in BlazeIt [  12 ]. The BlazeIt sampling approach can be effective in counting
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settings but these do not apply to our surveillance analyst use case; moreover, the BlazeIt

approach requires assumptions about the detected objects that may not apply for our use

case, as well as additional model training overhead. A better way to perform multi-step

identification for the surveillance analyst use case is to first do coarse temporal sampling,

e.g. down sample to 6 frames a minute from 60 frames per minute. Then perform finer

granularity sampling at query time.

Table  2.1 indicates running and walking as properties of interest. To accomplish this, we

perform inter-frame analysis. It is straightforward to calculate geographic displacement of

objects with the same color properties. With fixed cameras this is working well, and we plan

to expand to cover moving cameras. Also, we expect to continue this thrust to explore social

behavior of suspects and predict their intentions, for example, a man with a black hood is

wandering back and forth in front of a bank.

We are also looking for techniques to identify rare events, such as tattoos. Deep learning

is difficult in this case because of the absence of training data. Even color analysis is difficult

because of the dearth of examples to test algorithm design on.

2.2.6 Conclusion and Future Work

In this paper, we have introduced SurvQ, a human-in-the-loop system for analyzing

surveillance video. We have described a database backend that can scale to practical video

volumes, as well as an interface that dramatically lowers the human costs of video-driven

investigations. Although our experimental results are preliminary, the performance numbers

are already promising, and our intended user base of law enforcement officers have expressed

extreme enthusiasm for the software artifact. In the future, we plan to grow the video

datasets under management and extend the investigation interface to include mobile cameras,

both vehicle- and body-mounted. We also plan to apply the system to novel investigation

scenarios such as management of warehouses or construction sites. Finally, we will continue

to investigate "minimal user surface" ML deployments in a video context.
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2.3 Human Attribute Recognition from Unstructured Text (HART)

Specifically, we explore the problem of identifying properties describing humans from

unstructured text. As discussed in SurvQ [ 35 ], a finite number of object properties such as,

gender, race, build, height, clothes, etc. are used in profiling a person-of-interest to

search for them. We denote object-properties used in person profiling as OH .

(2.1) The sentence “a white male with medium build was seen in Vernon St.,

wearing white jeans and blue shirt” describes object-properties of a †person:

1. gender = male,

2. race = white,

3. build = medium,

4. ∗clothes = {jeans, shirt},

5. upper-wear-color= {white},

6. bottom-wear-color = {blue}, and

7. relation = {wearing, †Person, ∗Clothes}.

2.3.1 Problem Definition

Definition 2.3.1 (Wordnet Synsets). Wordnet[ 36 ] is a lexical knowledge base where words

are organized in a hypernym tree based on their origin. Words are grouped into Synsets based

on their synonyms. Wu-Palmer distance calculates the similarity between word meanings

based on how similar the word senses are and where the Synsets occur relative to each other

in the hypernym tree. Given the synsets of two strings st1 and st2, and the LCS (Least

Common Subsumer) between them, the Wu-Palmer distance is:

wpdist(st1 , st2) = 2 ∗ depth(lcs(st1 , st2))
depth(st1) + depth(st2) (2.2)

Definition 2.3.2 (Natural Language Inference). Given a hypothesis h and a premise p,

Natural language inference (NLI) is the task of determining the probability Pr of the hypoth-
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esis being true (entailment E), false (contradiction C) or undetermined (neutral N). NLI

determines the best label l:

arg max
l∈{E,C,N}

Pr(l | h, p)

Problem 2.1 (Human Attribute Recognition from Text). Given a large text T with Ts

sentences, each with |w| tokens, the problem of human attribute recognition from T is to

1. identify the set of sentences Cs ⊂ Ts that describes properties of a person,

2. expose the set of object-properties OH from Cs and

3. extract the set of values zp of the identified properties op.

Our problem setting assumes that the set of key-phrases (QH) often used in sentences

describing properties of a person are either known (provided by domain experts), or a small

amount of annotated documents are provided to identify QH manually. In Example  2.1 ,

QH = {wearing}. The first assumption is derived from literature in pedestrian attribute

recognition from visual and textual modalities, and the second assumption holds as small

amount of curated data is always available for a problem setting. Note that, (QH ∩ OH) 6=

{φ}. Candidate sentences are sentences in the text that mentions phrases similar to the

key-phrases within an empirical threshold value.

Definition 2.3.3 (Candidate Sentences). Given a collection of sentences Ts, key-phrase for

describing an object in text qH ⊂ QH , and an empirical threshold θH , Candidate sentence

is

Cs = {s : s ∈ Ts, qH ∈ QH | SIM(qH , s) > θH} (2.3)

2.3.2 Methodology

We now describe the property identification technique for unstructured texts to extract

attribute-based properties from large text documents. Our algorithm considers the full docu-

ment as input and reports a collection of object-properties and their set of values, as output.

To this end, we first identify the candidate sentences Cs from a collection of sentences Ts

by searching for the key-phrases (qH) using pre-trained language representation models and
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lexical knowledge bases. Then, we propose individual property-focused models to extract

the attributes and their corresponding values using the syntactic characteristics (i.e., parts-

of-speech) and lexical meanings of the tokens in the Candidate Sentences. Our heuristic

search algorithm, POSID iteratively checks the tokens in the candidate sentences and based

on the assigned tags in accordance with their syntactic functions identifies the properties in

OH and their values.

2.3.2.a Candidate Sentence Extraction

A naive approach to this task would be to consider it as a supervised classification

problem given enough training data. Since during this work, the primary goal was to define

on-demand models that works in absence of training data, we designed this as a similarity

search problem using pre-trained and lexical features, where the similarity between sentence

and key-phrase needs to reach an empirical threshold. We now proceed to describe the

different methods used to identify Cs.

(i) Pattern Matching.

As a baseline heuristic model, we implemented the Regular Expression (RE) Search

on Ts. Since we consider all sentences in the document as input corpus, if it describes mul-

tiple persons, this model captures all of the sentences describing a person as Cs. Individual

mentions are differentiated in later stages. For RE, SIM(qH , s) ∈ {0, 1}. Given the key-

phrase qH , the RE pattern searches for any sentence mentioning it:

[^]*qH[^.]+
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(ii) Similarity using Tokens

Similarity between qH and s is calculated based on the similarities between tokens w ∈ s

and qH . A single model is used to embed both w and qH into the same space. We used two

different token representation models.

SIM(qH , s) = max
w∈s

SIM(qH , w) (2.4)

(a) Word Embedding. Tokens in each sentence and in the key-phrase are represented

by Word2Vec [ 37 ] embeddings. If there are multiple tokens in a key-phrase, the average of

the embeddings are used. We use cosine similarity as the distance metric. Given uqH
and

uw are the final embedding vectors for q and w,

SIM(qH , w) = cos(uqH
, uw) = uqH

· uw

‖uqH
‖ · ‖uw‖

(2.5)

(b) Word Synsets. Tokens and key-phrases are represented by Wordnet [ 36 ] synsets

in NOUN form. For similarity/distance metric, we used the Wu-Palmer similarity [ 38 ]. Given

the synsets of q and w are sqH
and sw,

SIM(qH , w) = wpdist(sqH
, sw) (2.6)

(iii) Classification Model

The similarity search problem is redesigned as a classification problem where the sentences

are considered as input sequence, and the key-phrases are considered as labels. Probability

of sequence s belonging to a class qH is then considered as the similarity between a sentence

and a key-phrase. To that end, following Yin et al. [  39 ], we used pre-trained natural

language inference (NLI) models as a ready-made zero-shot sequence classifier. The input

sequences are considered as the NLI premise and a hypothesis is constructed from each

key-phrase. For example, if a key-phrase is clothes, we construct a hypothesis "This text

is about clothes". The probabilities for entailment and contradiction are then converted to

class label probabilities. Then, both the sequence and the hypothesis containing the class
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label are encoded using a sentence level encoder Sentence-BERT [  40 ] (SBert). Finally, we

use the NLI model to calculate the probability P . Given SBERT embedding of a sequence

s is denoted with Bs,

SIM(qH , s) = P (s is about qH | Bs, BqH
) (2.7)

(iv) Stacked Models

While RE search relies on specific patterns and returns exact matches, the other models

calculate a soft similarity, 0 ≤ SIM(qH , s) ≤ 1. Hence if initial results from RE search

returns no result for all the key-phrases we use Wordnet or SBert model to identify se-

mantically similar sentences to the key-phrases.

2.3.2.b Iterative Search for Properties

We now formally describe the POSID algorithm, which uses the models described in

Section  2.3.2.a . We start with the observations that led to the POSID algorithm.

Observations. We make the following observations:

(O1) Common to  O4.2.4 , object-properties have the single and multiple value contrasts.

(O2) Some properties follows specific patterns such as, gender = {male, female, man,

woman}, whereas some properties have variable values, as shown in  O4.2.5 .

(O3) Adjectives (ADJ) are used for naming or describing characteristics of a property, or

used with a NOUN phrase to modify and describe it.

(O4) Property values can span multiple tokens, but they tend to be consecutive.

(O5) Property values for clothes generally include the color, a range of colors, or a de-

scription of material.

(O6) Clothes usually is described after consecutive tokens with VERB tags VDG (such

as, gerund or present participle (VBG), past tense (VBD) etc). If proper syntax
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is followed, an entity is described with a VBD followed by a VBG. In most cases,

mentioning wearing.

(O7) After a token with VBG tag, until any ADJ or NOUN tag is encountered, any tokens

describing a PDCP {Determiner, Conjunction, Preposition}, or a Participle, or Adverb

is part of the property-name. An exception would be any PP AV {participle, adverb, or

verb} preceded by any PP ε {pronouns or non-tagged tokens}, which ends the mention

of a property-name.
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1 Algorithm 1: POSID(Ts, 〈op, zp〉)

1 : fop ← {gender, race, height}

2 : COLORsyn ← SYNSETS(“color”, Noun)[0]

3 : Cs ← extractCSRegex(Ts, QH)

4 : if Cs == φ then

5 : Cs ← extractCSModel(Ts, QH)

6 : fi

7 : OH ← ∅ // Collection of 〈op, zp〉 ≡ 〈name, values〉 pairs

8 : for s ∈ Cs do

9 : for o ∈ fop do

10 : // Lz is last token in s which is a property-value

11 : Lz = regexPROP(s, op)

12 : OH .APPEND(op, Lz)

13 : endfor

14 : sp = regexPROP(s, Clothes)

15 : if sp == φ then sp ← s \ Lz

16 : fi

17 : Nidx ← ∅ // Index-List for property-name

18 : D ← ∅ // List for property-values

19 : To ← TOKENIZE(sp) // List of tokens from sp

20 : Ta ← POS(To) // List of 〈token, POS-tag〉 from tokens

21 : checkPOS(Ta, Nidx, D, dcolor, Sw)

22 : endfor

23 : return OH
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2 Algorithm 2: checkPOS(Ta, Nidx, D, dcolor, Sw)

24 : for (w, t) ∈ Ta do

25 : // wi and ti is token and POS-tag at ith index in Ta

26 : if t1 is VBD then continue

27 : if t2 is VBG and t1 is VBD then continue

28 : if ti ∈ PDCP ∪ PP AV then

29 : if ti ∈ PP AV and ti−1 ∈ PP ε then break

30 : Nidx.APPEND(i)

31 : elseif ti is ADJ then

32 : Nidx ← ∅ // re-initialize name index-list

33 : D.APPEND(wi)

34 : elseif ti is NOUN then

35 : Sw ← SYNSETS(wi, NOUN)

36 : Nidx, D, dcolor = matchCOLOR(Sw, Nidx, D)

37 : if dcolor then continue

38 : N ← wi

39 : N ← writePROP(Nidx, N, Ta)

40 : // finalize property-name & assign the values

41 : if ti−1 is NOUN and

42 : OH [− 1].name == wi−1 then

43 : CONCAT(OH [− 1].name, wi, “”)

44 : else OH .APPEND([N, D])

45 : Nidx ← ∅, D ← ∅ // re-initialize Lists

46 : else break

47 : endfor

Algorithm  1 presents the pseudocode of the search technique POSID, which takes the sen-

tences in a document Ts as input and returns the collection of object-properties and their
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set of values, 〈〈op, zp〉〉 as output. In case of an implicit mention of clothes, we made an

assumption that description of clothes are always followed by gender, race, and/or

height.

Lines  3 -  5 Extract the candidate sentences with the RE-search. If results are empty,

extract them with semantic or classification models. Set of key-phrases QH is provided by

the system.

Lines  9 -  12 Iteratively search for all the finite-valued properties {gender, race, height}

in each Cs and append them to output.

regexPROP is a regular expression matching function that takes sentence s and property-

name op as input, and outputs

1. property-value zp, if op is a finite-valued property, or

2. partial sentence sp, if op is a variable-valued property.

Each op is mapped to a search-string pattern, sR in T .

Lines  14 -  15 For clothes, regexPROP returns either a partial sentence sp starting with

wearing, or an empty string. In case of an empty string, extract the remaining string from

Lz after discarding the extracted values in lines  9 -  12 .

Lines  26 -  27 If first and second token is verb, it is the start for the Relation property.

Following  (O6) , ignore consecutive verbs until another tag is encountered.

Lines  28 -  30 Following  (O7) , capture tokens from a VERB until any pronoun or non-tag

as free-form property value for clothes.

Lines  31 -  33 Capture the adjectives as clothes descriptions, and initialize the next property.

Lines  35 - 37 For noun descriptors in the value i.e., grey dress pants, compare the wordnet-

synset meaning for color (COLORsyn) to the noun-token meaning. Since a description is

encountered, name-index is re-initialized for the next property-name.

Lines  38 - 39 If a noun-phrase is not a color, it is considered as cloth-name with multiple

tokens i.e., dress pants, tank top, dark clothing. Populate the property-name by backtracking

the name-index list.

Line  44 If previous token is NOUN and does not match last token of the previous property-

name, description for next property has started. Finalize the current property name and
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value by appending it to result. Otherwise, in line  43 , amend the last inserted property-name

by appending the current token to it.

Generalization.

Algorithm  1 assumes that the property identifier is intended for human-properties. POSID

can be generalized to any object-properties in text as long as the property-names and type of

values are known. Search-string for fixed-valued properties have to be re-designed. Variable-

valued properties following some degree of grammatical structure, would be covered by the

iterative search pattern in POSID. Color will be replaced by the phrase that describes

the properties in the corresponding system. QH are highly non-restrictive phrases and can

be constructed from entity types or entity names.

2.3.3 Experiments

2.3.3.a Dataset Construction.

For property identifiers in textual modalities, we build a collection of text data, named

InciText dataset from newspaper articles, incident reports, press releases, and officer nar-

ratives from the local police department. We scraped local university newspaper articles to

search for articles with keywords i.e., investigation, suspect, ‘person of interest’ and ‘tip line

phone number’. InciText provides ground-truth annotations for 12 properties describing hu-

man attributes with most common being – gender, race, height, clothes and cloth

descriptions (colors). Each report, narrative, and press release describes zero, one, or

more persons.

2.3.3.b Settings.

For Word2Vec, we used the 300 dimensional pretrained model from NLTK [  41 ] trained

on Google News Dataset 

11
 . We pruned the model to include the most common words (44K

words). From NLTK, we used the built-in tokenizers and the Wordnet package for retrieving
11

 ↑  GoogleNews-vectors-negative300 
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the synsets and wu-palmer similarity score. For SBERT implementation, we used the zero-

shot classification pipeline 

12
 from transformers package using the SBERT model fine-tuned

on Multi-NLI [  42 ] task. For part-of-speech tagging, we used the averaged perceptron 

13
 

tagger model. The manual narratives in the InciTextdataset were excluded for property

identification task. Query phrases used for Cs identification are: qH = { clothes, wear,

suspect, shirts, pants }.

2.3.3.c Results

We compared the baseline RE-model with the other approaches in Section  2.3.2.a for find-

ing Cs. Two different set of metrics were used for the evaluation of clothes identification.

(Attr-only) evaluates how efficiently the model identified all clothes, and (Attr-value)

calculates the performance of the model in identifying both the attribute and its descriptive

values. For Attr-value, a true positive occurs only when a valid clothes name and a correct

description of that cloth is discovered. Figure  2.2 describes the performance of different can-

didate sentence extraction models based on the performance of clothes identification. For

the baseline, the group of tokens around wear returned three times better F1-score than any

other qH . With the other models, qH = {clothes} produced the best score. (RE + SBERT)

stacked model performs best with 87% and 90% F1-Scores, for both metrics. Although (RE

+ Wordnet) has a higher precision score of 93% for Attr-only, it has a low recall score of

only 65%, indicating over-fitting. Based on a property-frequency analysis, we showed the

identification results for a subset of properties in OH for InciText. Figure  2.3 shows the

performance of POSID with (RE+SBERT) for stacked model (lines  3 -  5 ). For gender and

race, the model showed the efficacy of the chosen search-pattern with 94% precision score.

A recall score of 73% shows that most people follow similar style for describing gender and

race. For height with only 57% recall score, a rule based model is not sufficient due to varied

styling.
12

 ↑  Zero-shot-classification 

13
 ↑  NLTK Perceptron 

62

https://huggingface.co/transformers/master/main_classes/pipelines.html#transformers.ZeroShotClassificationPipeline
https://www.nltk.org/_modules/nltk/tag/perceptron.html


2.3.4 Conclusion and Future Works

Although human attribute recognition from videos and images has been well studied,

we believe this is the first work that focuses on finding them from the text. [  43 ,  44 ] used

sentence encoders and dense neural networks to combine lexical and semantic features for

finding similar sentences in electronic medical records and academic writing. We demon-

strated the efficacy of HART, a human attribute recognition model from unstructured text,

outperforming the baseline language models. In future, we would like to implement HART

in other application domains and mission needs.
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Figure 2.6. Situational Knowledge on Demand proof-of-concept. Incoming
streams of data shown in a Leaflet map.
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Figure 2.7. An example of surveillance footage from West Lafayette, IN.
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Figure 2.8. SurvQ video ingestion and retrieval architecture
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Figure 2.9. The populated incident report
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Figure 2.10. The Incident Creation Form.
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Figure 2.11. Example actions a user might take with SurvQ.
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(a) List Viewpoint.

(b) Map Viewpoint.

Figure 2.12. The list and map viewpoints.
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Figure 2.13. The timeline viewpoint.
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Figure 2.14. Insertion Time vs Number of Trigger Functions. Insertion times
are calculated on an average of 5 trials.
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3. APPLYING MACHINE LEARNING AND DATA FUSION

TO THE “MISSING PERSON” PROBLEM

We present a system for integrating multiple sources of data for finding missing persons. This

system can assist authorities in finding children during amber alerts, mentally challenged

persons who have wandered off, or person-of-interests in an investigation. Authorities search

for the person in question by reaching out to acquaintances, checking video feeds, or by

looking into the previous histories relevant to the investigation. In the absence of any leads,

authorities lean on public help from sources such as tweets or tiplines. A missing person

investigation requires information from multiple modalities and heterogeneous data sources

to be combined.

Existing cross-modal fusion models use separate information models for each data modal-

ity and lack the compatibility to utilize pre-existing object properties in an application do-

main. A framework for multimodal information retrieval, called Find-Them is developed.

It includes extracting features from different modalities and mapping them into a standard

schema for context-based data fusion. Find-Them can integrate application domains with

previously derived object properties and can deliver data relevant for the mission objective

based on the context and needs of the user. Measurements on a novel open-world cross-media

dataset show the efficacy of our model. The objective of this work is to assist authorities in

finding uses of Find-Them in missing person investigation.

3.1 Introduction

There are many circumstances in which the missing person problem arises. They include

amber alerts, family reunification during natural disasters, prison escape, or unaccounted

people. Missing person search works similarly for prison escapees, adults with cognitive

problems, or missing children. The police have the same problem when they search for a

person of interest involved in a crime whether as a suspect or as a victim. For each situation

listed above, the authorities have a physical description of the person (e.g., a white male with

a medium build, wearing a blue shirt and black jeans) [  35 ]. Physical attributes are used as
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soft markers for person search [  45 ]. Additional information on missing persons comes from

their families, Twitter posts, and phone calls from the public. Available vehicle information

can be co-related with Department of Motor Vehicles (DMV) records. Irrespective of the

information source, it will have some identifying features of the missing person, based on

which the search is conducted. According to related works on missing persons from Policing

and Society journal, one of the first steps in dealing with missing person incidents is to search

the surveillance camera video footage in the vicinity. For example, West Lafayette, IN, has

cameras in all city buses, on many intersections in the downtown area, in the majority of

the local business buildings, and in all police cars. Moreover, the policemen themselves

are equipped with bodycams when on duty. Police in West Lafayette already spend hours

manually searching videos for missing persons [ 35 ]. Data fusion from these disparate data

sources would be a valuable addition for automatic information retrieval and querying.

In this paper, we report on a system we have built, called Find-Them, to perform video

capture, tweets and tips collection, feature identification, and information fusion among these

data sources. In Find-Them, we do not attempt to perform facial recognition, as video is low

resolution, taken from afar and the lighting conditions are usually poor (due to snow, rain,

or darkness). The persons of interest may be in the background or facing away from the

camera [  45 ] which makes relying on face recognition infeasible for our task. Instead, we focus

on other features, such as gender, clothing (e.g., baseball hat, shirts), and markings (e.g.,

tattoos). In the absence of the facial recognition, the system is not suited for identification

and tracking of a particular citizen, but instead helps with localizing a group of people with

similar attributes. While in general the system is not optimized to be used as a digital

spy, for the benefit of the society the government should restrict the use of this technology

confining it to the law enforcement tasks of searching for the specific persons of interest.

Furthermore, objective of Find-them is different from the task of entity matching. Entity

matching refers to identifying the data instances that refer to the same real-world entity

across data sources. Successful systems like Magellan, AutoEM, or CloudMatcher focuses

on entity matching by names, whereas Find-them focuses on finding the entities by their

physical features.
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To begin with, identifying a missing person is a data capture problem. As it was specified

before, information about a missing person can come from multiple sources such as surveil-

lance cameras, tweets, family members, and previous occurrences. Storing these multimodal

data is a storage problem at scale. Since data comes from multiple modalities and in large

amounts, the proposed storage system should normalize different modalities of data at a

large scale. Finding relevant information about a specific missing person from multimodal

data requires system-specific property identification in each modality and a context-based

data integration for a composite query through these modalities. As discussed in [ 35 ], train-

ing data for property identification is expensive to acquire, and input data from real-world

applications often have noise. For the missing person problem, traditional deep learning

methods are costly at scale since they require an enormous amount of specific training data.

Thus the traditional machine learning methods may fail for extraction of specific features

for on-demand missing person identification. Finally, in real-world applications, there are

terabytes of information. Therefore, any data fusion has to be done at a large scale while

accommodating multiple data sources.

Find-Them implements a streaming data capture and downsampling method to tackle

the problem of multimodal data capture and storage. To achieve scalability, Find-Them

loads both the raw data and the acquired properties into a Postgres database. Raw data

and properties are stored separately between cold storage and an online property server

to achieve speed and scalability. We propose modality-specific feature identifiers for video

feeds, unstructured text, and tweets. In this work, we explain the feature extractors required

for the missing person problem. For data fusion, Find-Them implements Entity-Attribute-

Relationship schemas compatible with the application domain. Using the features specified

by the user, we built SQL queries using the data description language. By performing these

queries (e.g., JOIN) over the standard schemas, Find-Them delivers the multimodal results

relevant to the user interest. The fusion methodology in Find-Them is expandable to other

modalities and different feature identifiers for the discussed modalities.

Firstly, we explain the related works. Then we discuss the Find-Them architecture in

detail. In the next section, we describe the proposed feature identifiers with benchmark

experimental results. In subsequent sections, we discuss a demonstration scenario for Find-
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Them and the generalization capabilities of the system. Finally, we include the future

directions and conclusion.

3.2 Related Work

Missing person search is a significant real-world problem that draws on work in several

areas of social and computational aspects.

3.2.1 Missing Person Search Applications.

Applications such as People Locator (PL) [ 46 ], Myosotis [ 47 ], NamUs  

1
 , ‘Google Person

Finder’ allow different levels of missing person search and comparison capabilities. People-

locator [  46 ], a search application for family reunification post-disaster, combines multiple

modalities for searching and reporting missing people such as structured web form, app-

based community reports (ReUnite), unstructured text from email, image-based hospital

reports (TriagePic), and other applications with PFIF (People Finder Interchange Format)

data format. Similar to Find-Them, for relevance matching PL employed SQL query-based

database search and Apache Solr based indexing and search-string matching. However, it

lacks the capability of face matching or multimodal searching. NamUs allows to

1. search for matching demographics, descriptors, and distinctive characteristics of a miss-

ing person;

2. automatically compare cases based on geography, dates, and physical features and

helps to find connections and investigative leads;

3. generate customized case maps.

NamUs has a similar comparison and search functionality as Find-Them. Google Person

Finder is a disaster time registry to post and search for missing person status. Myosotis

[ 47 ] aggregates data from heterogeneous missing people databases, allows visualization via

interactive maps, and infers an estimation of the probability of a new occurrence. Neither
1

 ↑  https://namus.nij.ojp.gov/ 
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NamUs, nor Google Finder, nor Myosotis allow for multimodal or on-demand search from

streaming heterogeneous data.

3.2.2 Person Re-identification (RE-ID).

Person re-id refers to searching for a person in video feeds through a textual or an image

query. Existing person re-id methods use both supervised and unsupervised learning [  35 ,  48 ]

techniques. Identity-aware annotations [  49 ,  50 ] and zero-shot learning have increased the

matching performance between image and text descriptions for person re-id by using text

attribute query. Attribute recognition in the above models requires a substantial amount of

training samples. Multimodal search differs from person re-id in the query-response formats.

Cross-modal search allows using different data modalities as a query and as a response as

well.

[ 51 ] augmented person re-id with facial sketch by fusing the facial attributes and the

semantic color information in attributes using a fuzzy rule-based layered classifier. Find-

Them does not perform any facial recognition, rather re-ids a person via various semantic

attributes, including the color information. Existing methods [  49 ,  50 ] for text attribute

extraction considers noun phrases as potential attribute values. [  49 ] filters the candidate

phrases using associated images. [  50 ] categorizes the noun phrases to specific attribute

phrases such as, upper-body following a dictionary clustering approach. These approaches do

not consider the noise in streaming documents and the performance bottleneck of parts-of-

speech taggers. They also do not differentiate between attribute names and values extraction.

3.2.3 Cross-modal Matching and Correlation Learning.

Most of the previous works [ 52 – 55 ] in multimodal matching have followed the idea of pro-

jecting the features from different modalities into a shared embedding space using modality-

specific transformations. [  52 ] focuses on correlation learning to learn linear projections using

pairwise information. In contrast, [ 53 ] uses both pairwise and semantic information, e.g.,

class labels, to learn the common subspace. [ 55 ] extends deep canonical correlation analysis

with an auto-encoder regularization term for nonlinear representations of multimodal data
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objects. Peng et al. [  54 ] better encodes the intra-modality and inter-modality correlation

with hierarchical networks.

Some recent methods learn richer semantic representations for different modalities by

using attention mechanism [  56 ], graph representations [ 57 ], and generative models [  58 ] to

build the encoding networks. Deep Relational Similarity Learning [  59 ] avoids explicitly

learning a common space by integrating relation learning, capturing the implicit nonlinear

distance metric.

While these learning methods exhibit good performance, mainly on bi-modal datasets,

they require a large amount of training data and do not scale well. Data representations lack

generalization capability across multiple modalities or data sources. Besides, many existing

application domains already have pre-derived domain-specific features with fine-tuned fea-

ture learning methods, but the above models cannot integrate these sources. Moreover, cur-

rent metric learning methods can only integrate user-specified data relevancy with training

samples or with class labels. The data fusion methodology described in Find-Them focuses

on solutions for the problems of scalability, lack of annotations, and use of pre-identified

features for data fusion.

Data fusion among multiple modalities has been used in many application domains such

as sentiment analysis [ 6 ], image-text matching [ 57 ], face retrieval [  51 ], and visual question-

answering for a better understanding of context. These approaches have performed well

for respective application domains, but they lack generalization capabilities. Similar to

Find-Them, [ 60 ] built a multimodal relational knowledge base by continuously querying for

detected objects from videos and matching objects in text. However, they do not perform

any attribute-specific search and cannot be generalized for multimodal person search.

3.3 System Overview

Figure  2.1 illustrates the architecture of Find-Them. Find-Them is divided into four

modules data ingestion, feature identification, relevance modeling, and data retrieval. Data

ingestion deals with the problem of data capture and data storage. The system captures the

streaming data and loads it into Postgres at the server end after necessary pre-processing.
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Feature extraction is done during load time using type-appropriate models for each data

source. Extracted properties are inserted into Postgres following the schema determined by

the entity-attribute-relationship model. The defined schema is used to create data integration

among multiple sources during the relevance modeling phase. Users issue one-shot and

standing queries to the system in the data retrieval phase. Ingestion and retrieval systems

can operate in parallel. A user preference model is built from the history of user queries and

is used in conjunction with the relevance model for data retrieval.

3.3.1 Data Ingestion

3.3.1.a Data Capture.

In Find-Them, we employ a streaming data capture system for video, unstructured text,

and tweets. While capturing tweets, we filtered the tweets with hashtags (#wetip, #Ful-

tonMissing) and user profiles (@CambMA, @WLPD). We utilize  Twitter search API to find

tweets with a specific hashtag or user-id from historical tweets.  Streaming API  captured the

streaming tweets matching the search tag. Finally, we deploy Kafka to ingest them into the

Postgres database to keep missing person cases separated by using each case as a topic, as

seen on the data capture module. Kafka consumers read from the topics and store the JSON

output from the API to Postgres. The tweet pre-processing module also uses the JSON

output as input. Using Kafka to read from each case separately ensures parallel processing

of multiple missing person cases.

For each modality, we adapt a different pre-processing system with a high-level property

identification. The extracted properties are chosen based on the requirements of the appli-

cation domain. This additional feature identification step is done at load time to reduce

response time during a complex query. Subsequent feature identification stages use the out-

put from the pre-processing steps as inputs. The granular features are more complex and

often involve computational overhead. Hence, we extract these features on-demand. For

example, for missing persons, authorities are looking for human attributes, so people are

identified during data ingestion for video feeds. In later stages of the feature identification,

we extract different properties of a person, such as, gender, race, cloth colors.

80

https://developer.twitter.com/en/docs/twitter-api/tweets/search/api-reference/get-tweets-search-all
https://developer.twitter.com/en/docs/twitter-api/tweets/filtered-stream/api-reference/get-tweets-search-stream


3.3.1.b Pre-processing of Video Feeds.

Find-Them follows similar ingress steps as SurvQ [  35 ] for video feeds. When the videos

arrive at the server in real-time or as a bulk manual upload, they are converted to MP-4 from

their current format and are downsampled to one frame per second for further processing.

YOLO [  2 ] is applied to each of these frames to identify the objects described in the Pascal

VOC dataset ( http://host.robots.ox.ac.uk/pascal/VOC/ ). For high-level object detection,

Find-Them uses YOLO because of its run-time efficiency and availability of pre-trained

models with a large number of object classes. The Pascal VOC dataset includes 20 class

labels, including person and seven types of vehicles, making it a good candidate for the

pre-trained model in the missing person problem. Each YOLO-detected object is further

examined in the feature extraction stage to identify finer granularity object properties.

3.3.1.c Pre-processing for Unstructured Text and Tweets.

Documents are converted to plain text from their incoming formats. Pre-processing

module standardizes texts in the documents by removing jargon, articles, abbreviations,

and short forms of regular English words, depending on the source of data collection. The

remaining texts are converted to lower cases.

The result from the Twitter API comes with a lot of metadata, which is helpful during

data fusion. Raw JSON object outputs from the API are parsed to separate the metadata and

original text. Texts in tweets are similar to unstructured text but include jargon, hashtag,

user tags, and abbreviations. So, before processing the tweets as documents, text in the

tweets is cleaned after removing or replacing the jargon with the closest English words. As

the next step, hashtags and user tags are removed from the text. Feature extraction module

designed for documents takes these cleaned and parsed texts as inputs.

Find-Them has an extendable library of feature extractors for video and text. We explain

the extractors needed for the missing person problem in detail in the Feature Extraction

section, along with the experimental results used for validation on datasets from real-world

applications. However, Find-Them is extendable to other modalities and feature extractors.

Feature extractors for other modalities can be added and used in a plug and play mode in
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Find-Them. It is also possible to use different feature extractors than the ones used in this

paper, given that they have the same output features.

3.3.1.d Data Storage.

To achieve scalability and a faster response time, we store the outputs of the feature

extractors in separate Postgres tables for each modality, along with pointers to the archived

raw videos and texts. Tweet metadata and user metadata are stored in different tables. This

solution allows finding relevant data objects with SQL queries in real-time.

3.3.2 Relevance Modeling and Data Fusion (EARS)

3.3.2.a Entity-Attribute-Relationship Model with Schema Mapping.

Pattern Matching 
with Predicates

Content Relevance 
Discovery

T1 ⨝ T2  …… ⨝ Tk

F2 , F6 , Fi 

Physical 
Schema

Entities
Attributes

Relationships

Logical 
Schema

S

Exact or Approximate 
Results

T1

T2

F2 , F6 , Fi F2 , F6 , Fi 

Figure 3.1. Data Fusion for Relevant Data Recommendation

For real-time data fusion, we propose to construct an entity-attribute-relationship (EAR)

model for each application domain and then map to a relational database with schema S, as

shown in Figure  3.1 . Each source needs to follow this defined schema. Adding a new data

source to the system would require extending the EAR model and the schema.

For example, Figure  3.2a and Figure  3.2b show the individual schema of incident reports

and videos for the problem of person identification for the West Lafayette Police Department.
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In Figure  3.2c , we show the proposed combined schema for cross-modal retrieval for mining

relevant data objects describing the person of interest. We translated all extracted features

from video and text to the above schema during data storage.

3.3.2.b Data Fusion with SQL JOIN.

We propose to use the Entity-Attribute-Relationship model with SQL querying (EARS)

for data fusion. Since data from each source has the same schema after schema mapping,

matching between data objects of different modalities translates into JOIN queries between

the tables. The results can be presented as an exact or approximate match depending on

the conditions imposed on the JOIN query.

We implement a nested loop join on relations from each modality and the incident re-

lation. Each queried missing person incident are converted into relation R with features

F1, F2, . . . , Fm. Features from modalities are translated into relations T1, T2, . . . Tn, where n

is the number of modalities in the system. We perform a join between R and each Tk (k ≤ n)

using the join predicate JP on all queried features,

JP (Tk, R) :=
∑

1≤i≤m

(Tk.Fi == R.Fi) (3.1)

For example, in Figure  3.1 , features from the video feed are translated into relation T1,

and features extracted from the incident report are translated into relation T2 after schema

mapping. If the user is interested in a person with features F2, F6, . . . , Fi, we create a JOIN

query over all the translated relations and the incident relation on features F2, F6, . . . , Fi.

3.3.2.c User Preference Modeling.

Find-Them employs a simplified user preference modeling to keep track of changes in user

requirements. We keep a record of the historical queries made by the user. For now, we issue

notifications during the streaming data delivery only for the current user query. For future

improvements, we are building a predictive model using the history of the user queries. This
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model will ensure a better on-demand data delivery and creation of notifications based on

both the context and the current user’s query.

3.3.3 Data Retrieval

During data retrieval, Find-Them expects a user to either create a missing person incident

or upload an example video/image/document/flyer (Figure  3.3 ) that describes the missing

person. As seen in Figure  2.10 , for incident creation, the user will upload gender, race, upper

body color, lower body color, and head/hair color as a description of the missing person.

Users will also mention the date range and the search area they are interested in searching

through.

In the former case, the example is parsed using the modality-specific feature extractor,

and the extracted features are used as user inputs. As seen in Figure  2.1 , features mentioned

by the user are considered as predicates to SQL queries and are defined as triggers to the

Postgres DBMS. Using one-shot and standing queries allows us to find the desired result from

both historical and streaming data. One-shot queries are immediately translated into SQL

for schema S and are executed. Standing queries are handled by triggers, which are invoked

automatically when any matching data arrives. When the queries involve information from

one modality, the retrieval is straightforward. If similar data arrives in the future from

other modalities, the trigger associated with the fusion model will link them and deliver the

streaming data objects as standing query results.

3.4 Feature Extraction

Our primary use case for the missing person was person identification for West Lafayette

Police Department (WLPD). WLPD searches for missing persons and suspects in a similar

way.

Persons of interest are described with different physical attributes, such as gender, race,

physical build, height, hair color, color and description of their clothes, and other visible

features in their body. These descriptions are circulated through press releases and missing

person flyers. Whenever there is a 9-1-1 call, the authorities generate an incident report
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describing the series of events. After the due investigation, the involved officers write an

investigation report on the incident. Both of these reports include person descriptions, as

mentioned above. We analyzed the text in the incident and investigation reports shared

by WLPD with us. WLPD shared these reports after proper anonymization of identifying

information. The top frequencies of different attributes for person profiling in the documents

are as follows: almost all documents use gender and race, 78% of the reports use clothes (such

as shirts, jeans, pants, jackets), and around 57% use height to describe a person. Therefore,

in this work, we only describe the feature identifiers that were used to extract gender, race,

clothes color in videos and text, as follows:

• For identifying clothes colors and tracking a person in the video feeds, we used a

heuristic-based color sampling method [  35 ] with YOLO as the background object iden-

tifier. This method allows us to identify and track a person only based on external

identifiers without violating privacy.

• For gender and clothes detection in videos, we relied on the traditional deep learning

object detection method and re-trained YOLO with newer class labels.

• For gender, race, and clothes details detection in unstructured text, we used the HART

model based on regular expression search, Word2Vec embedding, and pattern recogni-

tion. We also used a topic-based similarity search technique for finding tweets or texts

describing the objects in the videos. Using text embedding allows us to identify the

ambiguities in different people’s writing style when describing color.

The feature identification in visual modalities is significantly different to the feature

identification in textual modalities. Since text modalities describe the color of clothes in

words, there can be ambiguities in the description. On the other hand, in videos, the colors

can have high variance ranging from light to dark. The extracted features are stored in

Postgres following the common EAR model, which allows us to perform uniform SQL queries

across different modalities. We have benchmarked these models on real-world datasets and

used the extractor results during the data fusion.
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3.4.1 Color Analysis for Body Details.

For color sampling [  35 ], we use the bounding box of persons from the YOLO detection.

The bounding box is segmented into three body parts - head, upper section, and lower

section. We segment the body parts by estimating the ratio of each part to the bounding

box according to the human body proportions in anatomy. First, RGB values are extracted

from each pixel in a segmented region. Colors for each segment are assigned by calculating

the smallest distance between the extracted RGB values and the standard RGB values.

Integer RGB values make it easier to compare the extracted colors to baseline colors. In the

case of multiple colors in a region, a majority voting is applied to determine the color of the

area.

WLPD-Video-Dataset. We have collected and labeled over 20 hours of video from different

cameras and locations in the city of West Lafayette. Six custom classes with over 12200

images were labeled manually for re-training and testing the YOLO network to detect gender,

clothes, and color. Each one-minute chunk of the video consists of around 20 frames, sampled

at 3-second intervals.

In the test set from WLPD-Video-Dataset, the clothing colors were recognized with high

precision, while the color of the sampled head area were more prone to be affected by the

color of the background, as shown in Figure  3.4 .

Based on the color information, we can trace the movements of pedestrians across con-

tinuous frames. Figure  3.5 shows the moving routes of two pedestrians walking towards each

other. The dotted line after each pedestrian indicates their moving direction.

In cities, multiple cameras are installed at the same traffic cross-section to observe pedes-

trians from different angles, with each view providing additional information. We wanted

to trace the same person across multiple cameras installed at various locations for the miss-

ing person search. Figure  3.6 shows two examples of tracking the same pedestrian passing

through three areas. On the left, we track a cycling person wearing a red shirt passing from

locations 1 to 3. It takes only 39 seconds since he is cycling. On the right, we follow a

walking person wearing a red shirt passing from location 3 to 1 in the opposite direction. It

86



takes him about 6 minutes. So we can map out the walking trajectory of a person as long

as there is no change of clothes.

3.4.2 Re-training YOLO.

For gender and clothes detection in video feeds, we re-trained YOLO [ 2 ] to identify gender

and clothes in video feeds. Hue, saturation and brightness (HSB) for each frame has been

analyzed to improve object detection and recognition under night and changing weather

conditions. The range of the HSB values are tracked for each color as time passes and the

updated values are used for more accurate object detection and recognition. We are building

fine-tuned YOLO models for future improvement. We report results for both gender and

cloth detection with YOLOv3 and YOLOv4 in Table  3.1 . For gender and clothes detection,

we achieved 68% mAP and 67% mAP, respectively, when YOLO is re-trained without pre-

trained features. Achieving higher performance with real life low resolution raw video under

different light and weather conditions is a difficult task which requires future work.

Table 3.1. Performance of YOLO for Gender and Clothes Detection in
WLPD-Video-Dataset (mAP)

Object YOLO v3 YOLO v4
Gender 0.59 0.68
Clothes 0.56 0.67

3.4.3 Human Attributes from Unstructured Text.

Using the stacked (Regular Expression (RE) + Word2Vec) variant of the HART model

[ 61 ], we identified Candidate Sentences (Cs) from the texts of cleaned documents and tweets.

We searched for clothes with regular expressions on the sentences for finding Cs. If it returns

no result, the problem is formulated as a similarity search among all tokens in a sentence,

where clothes are used as the search token. We used the pre-trained Word2Vec embedding

for each token as features. If the cosine similarity between any token in a sentence and

the search phrase reaches an empirical threshold, we consider it as Cs. For the attribute
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value detection from Cs, specific patterns were searched for recognizing gender and race. For

clothes identification, we followed the Clothes Name and Value Identification algorithm from

[ 61 ] which uses Parts-of-Speech (POS) tags of tokens to identify the description.

FemmIR-text Dataset. For benchmark results on text features, we used part of the

text data from [ 61 ] consisting of incident reports, press releases, and officer narratives from

historical cases. It contains 13 press releases, 40 officer narratives, and five incident reports.

Due to privacy reasons, WLPD publicly released only a subset of redacted reports.

Table 3.2. Evaluation of Human Attribute Extraction on FemmIR-text

Attributes Gender Race
Clothes
Attr-only

Clothes
Attr-value

Precision 0.94 0.94 0.93 0.92
Recall 0.73 0.73 0.65 0.87
F1-Score 0.82 0.82 0.77 0.90

For unstructured text, as seen in Table  3.2 , the HART model performs adequately for an

on-demand detection model. Results for clothes are reported for (RE + Word2Vec + POS)

model on two evaluation metrics, attribute-only and attribute-value.

3.4.4 Semantic Similarity Search by Topic.

We employed a topic-based similarity search to extract documents describing the same

objects and attributes found in videos. We also used it as an additional method for finding

candidate sentences. Assuming that each sentence in a document is a mixture of some topics,

if any of those topics explain the search phrases, we posit that the sentence is a Candidate

Sentence. We used Latent Dirichlet Allocation (LDA) to identify the hidden topics of the

sentences in the documents and the query phrases (e.g., clothes, car, person, male). LDA is

a generative topic modeling technique where documents are represented as random mixtures

over unseen topics, and the topics are derived by calculating distributions over all the words in

the document. In this case, we have represented each sentence in the document and the query

phrase as individual mixture of topics. For distribution measurement, term frequencyinverse

document frequency (Tf-idf) vectors of all tokens in each sentence were used as unigram
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features. The cosine similarity of the query phrase topic against the topics of the corpus

of sentences measures the closest sentence matching the query. We have collected 249857

tweets from 77943 users describing topics related to Cambridge, MA in the Cambridge-

Public-Authority-Tweets (CPAT) dataset.

3.5 Demonstration

Finally, we demonstrate Find-Them on the incident reports, press releases, and video

feeds from the West Lafayette Police Department. We are working on adding the Depart-

ment of Motor Vehicles records and public tips as additional data sources in the future.

We show how Find-Them can accurately detect and track a missing person based on non-

invasive physical properties and minimize the investigation effort to find a missing person.

We describe the users interaction through six steps, impersonating an officer in WLPD. We

annotate each step with a circle in Figure  3.8 .

Step 1© (Create Missing Incident or Upload Example): First, the user uploads

an incident report, a flyer, or a tweet with a physical description of the missing person with

the search area and the search timeline in step (1b). They can also upload a video clip or

snapshot of the missing person. In this case, we apply appropriate feature extractors to the

examples based on their modality. Then the predicates for the search query are created with

the extracted features. When the user does not have any examples, they can create a missing

person incident by filling out the person’s details, the search area, and the timeline, as seen

in step (1a).

Step 2© (Creation of Predicates): For searching a person, the WLPD officer specified

the identifying properties in step 1. Using those inputs, we created an incident schema which

becomes the search criteria for current and future streaming data in step (2). Triggers in

Postgres await for streaming data with similar features to the incident, and it notifies the

police officer of any matching video feed or tweets. The police officer can always revisit the

incidents from their search history.

Step 3© (EAR Mapping). As seen in Figure  3.2a , incident reports have a feature

extractor that outputs clothes as individual entities and then extracts their details, whereas,
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in Figure  3.2b , we can see the details are extracted in terms of body parts. Both of these

modalities need to map to the common EAR model shown in Figure  3.2c . The system maps

the incoming document features to the common EAR model as follows -

(shirts, jackets) → upper body,

(pants, jeans) → lower body, and

(hat, cap) → head.

Step 4©, 5© (JOIN among Data Sources). Before this step, data from each modality

is stored in Postgres tables in an atomic manner. The data storage schema was built con-

sidering different categories of features necessary for missing person problems. For example,

physical details about a missing person were saved in one table, whereas incident location

was stored in another. Separation of storage allows us to answer simple queries requiring

only one type of information quickly. When the query involves multiple types of information,

we create SQL queries to perform JOIN between separate tables representing features from

different modalities. The first JOIN in step (4a) separately creates the primary results from

each modality. In step (4b), we performed a union of all modalities. Finally, in step (5),

we perform a JOIN between the accumulated results and the previously created incident

table to extract the subset of data objects which match the user search criteria and show

the multimodal result on the investigation page.

Step 6© (Different Viewpoints). Similar to [ 35 ], there are three possible viewpoints

the user can choose from to see the results- list, map, and timeline. The timeline view was

generated to mimic the investigation timeline, whereas the map view allows us to pinpoint

a location. The user can also choose their favorite results and can see the filtered result at

a later time.

3.6 Scalability, Universality, and Multi-user.

Find-Them establishes a common information model, relational schema across multiple

data sources, and eliminates the need for separate data representation and linking methods.

These models are universal for all modalities without additional overhead since converting

features into relational tables is a linear process. The linking process for EARS can scale to a
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large number of properties from data objects, and EARS does not require any training. The

system demonstration shows that we could query historical data (in thousands of records)

and streaming data in real-time during inference time. For the space constraint, we do not

include the time comparisons here. Find-Them is capable of extension to multiple users,

each with their own set of preferences in the form of queries and data objects. Since each

user has a mapping to the retrieval set with their queries, their queries are kept separate.

3.7 Conclusion and Future Work

This paper has introduced Find-Them, a feature-based multimodal data fusion system

for analyzing video feeds with other data modalities for finding missing persons. We have

described a database backend, along with a schema and a relational query-based fusion

method that can scale to a considerably large amount of data volume, along with a fast

response time. Our experimental results showed satisfactory performance for the feature

identifiers for commonly used missing person features. Find-Them can also identify the con-

nections between historical and incoming missing cases, giving the law enforcement officers

an edge in their investigations. In the future, we will expand the video and text datasets

by including mobile camera videos, city maintenance records, and Bureau of Motor Vehicles

records. We also have future goals to include more data modalities and evaluate the effects of

humans-in-the-loop on improving performance. We further benchmark the EARS algorithm

for searching a person with certain features in an incremental work. In future work we will

test Find-Them and its viewpoints capability at rush hours with data collected during game

day with heavy traffic in the university area and manually annotated map-timeline ground

truth. Finally, we will extend the framework to include feature extraction as part of the

relevance modeling in an end-to-end neural network architecture and user interests will be

modeled based on their historical queries.
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(a) Schema for Incident Reports.

(b) Schema for Video Feeds.

(c) Combined Schema for Fusion between Multiple Modalities.

Figure 3.2. Schema Models for Data Storage.
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(a) Flyers. (b) Screenshots.

Figure 3.3. Upload Example of Data Objects.

Figure 3.4. Color recognition on WLPD-Video-Dataset
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Figure 3.5. Tracking of a pedestrian crossing the street from a singular camera.

Figure 3.6. Pedestrian tracking at multiple scenes with multiple cameras.
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Figure 3.7. Relevant Tweets with LDA in the CPAT dataset describing a
PERSON WITH GUN in Cambridge Area.
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4. FEATURE-CENTRIC MULTIMODAL INFORMATION

RETRIEVAL (FemmIR)

4.1 Introduction

With the influx of media collections, exploratory data analysis requires comparing data

from different modalities to grasp a more informed decision for any phenomenon. With the

ever-growing size of the multi-media data, multi-modal data analysis becomes difficult for

any real-world application-specific information needs, specially when there is heterogeneity

among data properties in different modalities and information needs. Current data discovery

systems rely on manual lookup, exploration of the relational database structure, or cross-

modal information retrieval for the data preparation task. Traditional cross-modal retrieval

models create a common representation space to compare the similarities between data

sources, whereas relational query models find the user intentions from the query history and

deliver the data tuples that match the user preference model. However, having a common

subspace to translate all incoming data, or designing new queries for every new modality

causes a system with existing properties to fail. So we ask the question, how can we handle

data retrieval in applications with existing object properties and explicit information needs?

Two common reasons retrieval systems with application-specific information needs fail

are: (1) disconnect between high-level information needs and low-level object properties, and

(2) lack of annotated data compared to the size of the multimedia data. Object properties

are often specified to the system as high-level information needs, whereas most retrieval

systems use representation models to gather low-level features from different modalities be-

fore mapping them into the common subspace to compare them. Multi-modal systems that

can process high-level information need described as properties [  1 ,  62 ] often have to handle

retrieval from a large repository, or streaming data. [ 1 ] expects to process 60,000 frames

per minute from the camera feeds [  35 ], whereas on average 6,000 tweets are generated per

second in [  1 ]. Most retrieval systems cannot process data ingestion for these large amounts

of data, and annotating them for training to discriminate between relevant and irrelevant,

is a near-impossible task.
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Therefore, in case of application-specific information needs, one should explore a re-

trieval system that would use existing object properties in the data. Examples of commonly

observed retrieval system failures caused by explicit information need include: (1) decline

of model accuracy (due to using the same property identifiers for all systems, and lack of

generalization), (2) waste of computational resources (due to re-running identifiers), (3) ex-

cessive processing time (due to failure to scale to large data), (4) inability to incorporate

new modalities (due to incoherent representation and redundant properties), and (5) sys-

tem crash (due to invalid modalities beyond design). These examples indicate a common

problem: mismatch between properties in the information need and in the data, as well as

dependence on annotations. To motivate our work, we start with an example inspired by a

real-world system, where local law enforcement officers asked for assistance to sift through

hours of videos [ 35 ].

Object-property focused Information Need An agency wants to build an automated system

to find persons of interest from many hours of video feeds. Incident reports and text

queries were considered to be text modalities. Alex is asked to develop a machine

learning (ML) pipeline over this dataset to predict the videos where the person

mentioned in the text would be found, and, subsequently, the authority would look for

them in those videos. Alex decides to use an off-the-shelf retrieval algorithm that is

trained over video and text multi-media data. But the performance was not

satisfactory. Alex was not able to modify the model to focus on specific properties

which are most common for a missing person. On the other hand, he could not run

transfer learning as the annotated data is very difficult to achieve in this case, where

one positive case occurs in 8-10 hours of video. Now he wonders: (1) how can he

re-train the retrieval model without any training data to focus similarity on the

desired features? (2) If he runs a property identifier in each data modality and

performs only explicit matching would that achieve the desired performance? (3) How

can he map similar properties from each modality?

Existing tools [  63 ,  64 ] that use encoder-decoder architecture or metric learning to map

low-level features to a common space cannot explicitly consider high-level properties. Also,

97



the system required a soft-match approach rather than an exact match since finding persons-

of-interest is a sensitive use case, and although organizations want to ease their workload,

they do not want to commit any mistakes. Example  4.1 is one among many incidents in

real-world applications where similarities among multi-media sources are required with a

focus on specific object properties [citations]. As mentioned in prior work [  65 ], “21% of

the bugs encountered in Microsoft Azure services were due to inconsistent assumptions about

data format [ 66 ]. Furthermore, 83% of the data-format bugs were due to inconsistencies

between data producers and consumers, while 17% were due to mismatches between different

consumer interpretations of the same data. Similar incidents happened due to misspelling

and incorrect date-time format [ 67 ], and issues pertaining to data fusion where schema as-

sumptions break for a new data source [  68 ,  69 ].” Hence a retrieval system must handle

the inconsistent assumptions about object properties from different data sources. We pro-

vide another example where a system fails with the introduction of novel modalities or data

sources.

Mismatched Properties across Data Sources As pointed out as an example in prior work

[ 70 ], “An organization within the Air Force collects data from sensors to support data

scientists in producing data-driven reports for decision-makers. This vast and

heterogeneous data is organized across hundreds of tables in a data lake, each with a

different schema.” DICE [  70 ] helps in finding the right data sources by finding join

paths across tables and involving human-in-the-loop. But as new tables from

different sensors are added, there is no guarantee the previous joins will hold.

The aforementioned examples bring forth three key challenges. First, we need to find

a common representation model for object properties from all modalities and map them

into a common embedding space for the downstream similarity matching task. Second,

the similarity of the data samples needs to be measured in a manner that captures the

approximate matches. For example, two records can be similar if they have the “same

entities”, and/or they describe the “same event”. Third, for the retrieval model, we need to

find a training method in absence of annotated data.
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Common representation modeling with Graphs. Towards solving the first challenge, our ob-

servation is that most real-world data describes relational knowledge among different entities,

along with their attributes and metadata such as spatial and temporal data. Graph repre-

sentation allows these structural and characteristic information to be stored and accessed

efficiently [  71 ], across multiple modalities. Besides, deep learning-based dynamic graph em-

bedding methods [  72 ,  73 ] learn low dimensional vector representations for the graph while

preserving both the graph properties and the structure. Despite different naming and organi-

zation conventions across various data sources, each data-sample still holds the relationship

properties among entities. This eliminates the issue of heterogeneous property representa-

tions. For example, social network recommendation engines (such as, Yelp [ 74 ], or Pinterest

[ 75 ]), or multi-media recommendation applications (such as, micro-video recommendation in

tiktok, Kwai, or MovieLens [  76 ]) often use graph representations.

Tensor-based similarity comparison. Our second observation is that real-world information

need often emphasizes implicit matching (retrieval matching, entity-relation matching, or

user-item matching) [ 77 ] rather than just explicit matching. Since tensor is a geometric

object that describes relations between vectors and prior works [ 78 ] have shown that neural

tensor network (NTN) can explicitly model multiple interactions of relational data, we choose

to use an NTN-based framework to measure the similarity between graph representations.

The optimal number of interaction scores is application-specific. For example, an application

looking for person-of-interests wants to soft-match a person with similar race, gender, and

clothes, whereas a missing person search would require to match all human attributes for an

exact match. The model would learn that the multi-media samples from different modalities

describing the same entity would be in similar parts of the semantic space.

Weakly supervised learning for retrieval. Our third and final observation is, capturing how

much change is needed to convert one data-sample to another can provide us with a source

of weak supervision for cross-modal retrieval. We consider a data sample as a collection of

objects with certain properties along with the relationships among them. Since graph edit

distance (GED) has been shown to be an effective graph distance metric in many applica-

tions, such as graph similarity search [ 79 ,  80 ], graph classification [  81 ,  82 ], image indexing
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[ 83 ], etc., we modeled a data-sample similarity metric based on GED. Since multi-media

data is usually large in number, it is expensive to annotate the relevance for each different

system. Prior works in retrieval system [ 84 – 87 ] use inexact weak supervision to tackle this

issue of annotation expense.

Solution Sketch. We propose FemmIR, a framework that compares data from different

modalities and heterogeneous sources to user-provided information need and calculates a

similarity score among them. Our framework involves three main components:

1. Data Ingestion: a graph encoding mechanism that translates properties from incoming

data into an attributed graph representation. In general, property names are considered

as edge labels, whereas values are used as node labels.

2. Weak Label Generation: For capturing the similarity between a pair of data samples, we

define a new distance metric that indirectly holds the entity and relationship constraints

between the samples, Content Edit Distance (CED). CED captures the amount of change

needed to convert one attributed data graph to another by including the object replace-

ment cost for cost matrix calculation in Munkres algorithm [  88 ]. CED is later used to

define relevance label based on system requirements.

3. Similarity Comparison: Finally, we train a lean-able embedding function for multiplicative

comparison between attributed graphs using the SimGNN architecture [  89 ]. During the

training, the objective function minimizes the difference between the predicted score and

the ground truth obtained from converting the CED into a similarity score. During

inference, the learned embedding function calculates the similarity score between the

attributed graphs from the data-records.

Given a scenario where the user provides information need as an example and incoming

streams have identified properties, FemmIR starts with building the attributed graphs. In

case of unseen raw data, FemmIR extracts the object properties either offline, or with priority

polling [  35 ] for bulk streams in an additional property identification component. Second, the

CEDs between the graphs are calculated between the query example and the data samples.

Finally, the model is trained to calculate the similarity score between records.
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Scope of our work. In this work, we only focus on retrieval cases where either (1) prop-

erties from different objects and relationships among them have been identified, or (2) the

system has specified its own identifiers for specific data modalities. Note that prior data-

matching approaches [  1 ,  90 ] that employ retrieval model on high-level properties assume

there exists a common schema or feature mapping among different modalities. In contrast,

FemmIR is agnostic to the design of the source-schema and can support any type of property

schema from any data source ranging from raw data in data warehouse (Example  4.1 ) to a

relational database in a data lake (Example  4.1 ). FemmIR also delivers varying degrees of

relevance without the computational overhead. However, FemmIR cannot handle multiple

query examples at the same time for single information need as it requires predicting user

intent from those examples [  65 ] and that is not the focus of this work.

FemmIR requires knowledge of the application-specific property identifiers to be used

throughout the system. The choice of property identifiers depends on the domain knowledge

and the properties-of-importance, e.g., in Example  4.1 , Alex would require identifiers for

video and text which extracts human properties i.e., gender, race, cloths-worn, cloths-colors,

etc. This assumption holds because: (1) for object and action recognition tasks there exists

a well-known set of relevant identifiers for common modalities - video [  2 ,  91 ], text [  92 ], image

[ 93 ,  94 ], and 3D models [ 95 ] with reasonable performance. Objects and actions cover the

most common properties in retrieval applications. (2) If the information need is expressed

through high-level properties [ 1 ,  96 ,  97 ], we can assume the system already extracted prop-

erties from most modalities and domain experts are typically aware of the likely class of

properties for the specific task at hand and can easily provide this additional knowledge to

the system.

Property Identifiers. While we use the property-identifier outputs to find relevant data

sources to the query example, developing identifiers is orthogonal to our work. A number

of object and action recognition paradigms from different modalities exist in the literature.

FemmIR assumes access to a suite of property-identification techniques and uses them to

extract properties from the data. To support a new data source, FemmIR needs to know the

corresponding modality and the properties-of-interest. We discuss some common classes of
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property identifiers as representative ones, which are currently supported in the implementa-

tion of FemmIR. We have selected them based on the criteria of having semantically similar

properties or similar property definitions. For properties discovery in visual modalities, we

rely on prior work on action recognition [  91 ,  93 ], object detection [ 94 ,  98 ], etc. As part

of FemmIR, we proposed a novel property identification method for properties described in

textual modalities. Properties from the unstructured text are hard to extract because of its

multifaceted and individualistic characteristics of it. Traditional natural language process-

ing techniques for entity and relation extraction fail for such entity-specific properties. As a

specific example, we proposed a method for extracting properties describing human attributes

in textual modalities. While our evaluation covers specific property identifiers, FemmIR is

generic and works for any class of identifiers, as long as the corresponding properties are

available.

Limitations of previous works. Correlation learning methods [  52 – 55 ,  99 – 101 ] linearly or

non-linearly projects low-level features from representation models to a common subspace.

Metric learning methods [  102 – 104 ] learn a distance function over data objects based on a loss

function to map them into the common subspace. All these models require a large amount

of training data and data representations lack a common encoding mechanism. FemmIR

closely relates to metric learning methods. Contrary to them, we do not directly correlate

class labels or weak labels to the loss function. The proposed Edit distance between property

graphs implicitly captures the signal for relevance.

In contrast to common representation learning models, data discovery models based on

relational queries allows more flexibility to consider explicit information need from users, and

use high-level properties in the system. EARS [  1 ] is one such content-based data discovery

system that, similar to our approach, takes user examples as queries and delivers relevant

multi-media results. However, the prime aspect of EARS is it assumes a schema mapping

among all modalities, and to introduce new modalities the common schema needs to be

updated. In contrast, FemmIR offers a general solution to include retrieval from novel

modalities for a diverse set of systems.
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4.1.1 Preliminaries & Problem Definition

In this section, we first provide formal definition to attributed relational graph. We then

proceed to formulate the problem of multi-modal information retrieval for property-specific

information need.

Definition 4.1.1 (Attributed relational graph). An attributed relational graph (ARG) is

a graph whose nodes and edges have assigned attributes (single values or vectors of values

from Σ). For the sake of simplicity, from now on we denote the node and edge attributes by

labels, as labels are specific type of attributes. Although we focus our methodology only on

directed and labeled graphs, it is designed to handle any forms of graphs. It is defined as:

g = (N, E, l) where

1. N is the finite set of nodes,

2. E ⊆ N ×N is the set of edges,

3. l : N(g) ∪ E(g) → Σ is a labelling function that assigns each vertex and/or edge a

label from Σ. Specifically, l(u) and l(u, u′) are the label of node u and the label of edge

(u, u′), respectively,

4. Σ is a finite or infinite set of unconstrained labels. A ∈ Σ represents labels enumerating

the node-type.

Definition 4.1.2 (Graph Edit Distance). Formally, the edit distance between g1 and g2,

denoted by GED (g1, g2), is the number of edit operations in the optimal alignments that

transform g1 into g2, where an edit operation on a graph g is an insertion or deletion of a

node/edge or relabelling of a node/edge. Intuitively, if two graphs are identical (isomorphic),

their GED is 0.

Considering a collection of data from M ∈ Z+ modalities, we denote the j-th sample of

the i-th modality as di
j. The set containing all the ni ∈ Z0+ samples of the i-th modality is

denoted as Di = {di
1, di

2, . . . , di
ni}. Each data sample contains a collection of object-properties.

For example, a document has a topic, metadata, and entities with their relationships, along
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with any event it describes. Let O = {o1, o2, . . . , ol} be the set of all such object-properties,

where zr is the set of values of property or. A data sample di
j is described with a subset of

O. OE ⊆ O denotes the set of object-properties describing an entity E. zr = {φ} indicates

that or is not present in di
j. Property identifiers implement a relation, PROP (di

j) ⊂ O that

maps a data-sample to a set of object-properties (PROP: D → O). A query is issued against

a corpus with M-modalities, D = {D1,D2, . . . ,DM}.

Problem 4.1 (Multimodal Information Retrieval). Qdm∈M= {o1 = z1, o2 = z2, . . . , op = zp}

is a data query that is expressed in one of the two ways:

(1) (Query-by-Properties) with p object-properties mentioning a target data-sample dm
q from

modality m with PROP (dm
q ) = Qdm∈M, or

(2) (Query-by-Example) with an example data-sample (dm
q ) of modality m with PROP

(dm
q ) = Qdm∈M.

The task is to retrieve a ranked list, R = (dx1
1 , dx2

2 , . . . dxt
t ) of t ∈ N0 data-samples from all

available modalities in the system satisfying PROP (dm
q ), where dxc

c is c-th data in R from

modality xc ∈R M.

Relevance is scored based on the degree of common object-properties between the data-

object dxc
c in the ranked list, and the query data dm

q , PROP (dm
q ) ∩ PROP (dxc

c ). A

similarity score is used to define the degree of relevance, 0 ≤ SIM (dxc
c , dm

q ) ≤ 1. Similarity

score of 0 indicates non-relevance, whereas a score of 1 indicates complete relevance and a

proper subset, PROP (dm
q ) ⊂ PROP (dxc

c ).

Our problem setting assumes that the user has knowledge about op and their correspond-

ing zp for Query-by-Properties. This assumption is realistic in real-world scenarios and has

been considered in multimodal data query literature where properties are used to express

the information need [  1 ,  96 ,  97 ].

4.2 Multimodal Information Retrieval

We will now describe the multimodal similarity matching method to find the relevant data

to user provided information need (mentioned with an example, or with object properties).
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The matching algorithm considers the data samples, dxc
c (from the data repository, or from

data streams) and user provided example, dm
q as input and outputs the similarity score

between them: SIM (dxc
c , dm

q ). The corresponding object-properties are assumed to be

available from each data sample extracted by the system-specific property identifiers before

the matching algorithm is applied. We propose a weakly supervised approach to rank the

data samples by generating a distance metric between them based on the amount of edits

(changes) needed to convert the properties of one sample to another instead of manually

annotating the number of matched object-properties. To this end, we first process the input

data samples with a graph ingestion mechanism which converts the extracted properties into

a hierarchical attributed relational graph (HARG). Our weakly supervised strategy, FemmIR

adopted the Munkers’ algorithm [  88 ] to calculate the edit distance between the data samples.

Finally, we used a neural network based edit distance approximation algorithm to learn a

function to map the graph embedding of the HARGs to a similarity score between the

data samples. During inference, the model just takes the extracted properties from the data

samples, and outputs the similarity score by using the mapping functions. We start with an

example scenario to demonstrate how data ingestion works and then proceed to describe the

weakly supervised approach.

4.2.1 Data Ingestion with Graphs

Consider the task of finding the location of a person from large amount of video data

using the text queries or reports (Example  4.1 ). The system finds the video feeds that has

the persons similar to the report description (using multi-modal similarity matching) by

focusing on object-properties of persons in the video and text. The goal is to identify the

similarity score between video feeds, text queries, and incident reports which can be used to

deliver a ranked list of relevant data samples to the user.

Observations. We make the following observations.

O4.2.1 The number of object-properties that is used to compare between two data sam-

ples are finite, and the value of the properties are mostly categorical values. A

data sample can describe a large amount of objects and object-properties, but for
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Figure 4.1. HARG and Weak Label Generation; Left side graph refers to gq,
and the right side graph refers to gc. Node-type labels are as follows. V: EPL
Vertex, R: Root, P: Person, C: Clothes, T: Type, M: Motor-Vehicles. Squared
nodes correspond to the non-empty leaf nodes.

system-specific similarity comparison an user is only interested in a finite number

of properties.

O4.2.2 Data samples are objects themselves that have different properties such as, meta-

data, topics, and events that they describe. Entities are specific types of objects

described in a data sample which has its own properties.

O4.2.3 Relationships between objects are a specific types of object-properties which belong

to all participating objects. The set of values corresponding to the objects would

be complementary to each other. Value for relation-name can be different for the

same relationship through different data samples. For example, different text would

describe the same action in different forms: wearing, wear, has.

O4.2.4 Some properties in zp have single and fixed value-set i.e., gender, race, height,

while other properties have a multiple number of values in their value-set i.e.,

clothes.
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O4.2.5 Some object-properties such as, clothes-color have different values for differ-

ent data samples. For example, in Figure  4.1 , UPPER-WEAR-COLOR, SHIRT-COLOR,

COLOR all refer to the color of clothes.

Our intuition here is that entities, relationships, and object-properties in a data sample

have a inter-connected structure and if we can capture the changes we need to make to

this structure to convert it to structure of another data-sample, then we can capture the

differences between these samples. Based on this intuition, FemmIR starts by constructing

a hierarchical attributed relational graph, called (HARG), with a common hierarchy for all

data samples. The choice of graph as a representation was influenced by:

1. graph being the best data structure to capture information from connected structures,

2. based on observations  O4.2.3 and  O4.2.5 , a data structure with representation-

invariant encoding mechanisms that can capture the syntactic similarities between

different values was necessary.

Definition 4.2.1 (Hierarchical Attributed Relational Graph). HARG is a specific type of

ARG in the form of a multi-level tree with heves. It consists of a root node, multiple levels

of nodes and edges emanating from it, and specific type of leaf nodes. Nodes at level h is

denoted by Nh.

CONSTRUCT-HARG. Each data sample is represented as HARG, following the steps:

1. The graph starts with a single node at level 0 (h = 0) containing a common-label

(content/ object/ root) for all data samples in the same application domain: l(N0) =

{ROOT} .

2. Level 1 nodes constitute of the object-properties of the data sample itself where the

property-name is the edge label, and the property-value is the node label: l(N0, N1) =

op, l(N1) = zp.

With the exception of op being an entity of that data sample, N1 would be a leaf node.

And for entities, we define the edge label as l(N0, N1) = {hasEntity}.

3. In case a set of op describes the object-properties of an entity, Nk(k ≥ 1) will be a pointer

to the properties of that entity, whereas l(Nk) = {entity-type}. We categorize entities
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in two groups for each data sample: primary, and secondary. Level 1 of HARG only

contains primary entities.

4. Level 2 and subsequent levels contain the property-values of the entities in the previous

level with l(Nk, Nk+1) = op(k ≥ 1) and l(Nk) = zp(k ≥ 2). From Definition  4.2.3 , for

relation properties, 〈R, S, Arg〉 where entity-pointer S is at level-k and entity-pointer

Arg is at level-(k + 1), l(Nk, Nk+1) = R, l(Nk) = S, l(Nk+1) = Arg.

5. There can be edges between entities in the same level with relation properties, R. With

nodes Nk and N r,

l(Nk, N r) = R, where l(Nk) 6= l(N r) but k = r.

6. The leaf nodes of HARG always contain a property-value or a NULL value for zp = {φ}.

Definition 4.2.2 (Primary Entities). Primary entities are entities that take the role of a

subject in terms of a verb.

1. In visual modalities, entities that control the action or relation properties are considered

as primary entities.

2. Entities that satisfy any of the following criteria is considered as primary entities in

textual modalities:

(a) In phase structure grammars, primary entity is an immediate dependent of the

root node [ 105 ],

(b) In dependency grammars, primary entity is an immediate dependent of the finite

verb [ 106 ].

3. For database records, we consider the entities from the tables with no foreign key con-

straints as the primary entity.

Secondary entities include any entities not satisfying the conditions of primary entities in-

cluding objects, verb arguments, and themes.
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Definition 4.2.3 (Relation between Objects). Object-properties describing a relationship

or action R between two entities S (initiator) and Arg (outcome/ receiver/ modifier) are

defined as relation properties, and the property-value is defined as a triplet of 〈R, S, Arg〉.

For a n-ary relationship R, identifiers associate each action with multiple entity arguments,

Arg1, Arg2, . . . , Argi, . . . , Argn with role Ri
o. n-ary relationships are broken into multiple

binary relationships with l(Nk, Nk+1) = {R : Ri
o}, l(Nk) = S, l(Nk+1) = {Argi}.

Figure  4.1 demonstrates two example hierarchical attributed relational graphs from the

experimental dataset. R1 and R2 refers to two different data samples. For the leaf nodes

T2, M1, and T3 in R2, zp = {φ}. Wear, and riding refers to the Relation property,

where Persons are subjects, and Clothes and Motor-vehicles are arguments. We made

two assumptions for the generation process:

(I) We assume prior knowledge of the system-specific properties [ ] and that they have

been extracted with appropriate property-identifiers,

(II) The entity types for node labels are system-specific, and must be consistent through

lifetime of the system. This assumption is valid since the property identifiers from

each modality would be system-specific and extracted object types would be consis-

tent across data samples.

4.2.2 Weak Label Generation

FemmIR further defines a new distance metric, Content Edit Distance (CED) using

a variation of the Munkres’ algorithm [  88 ] to calculate the amount of edits (changes) for

optimal alignment of the query-example HARG to HARG of another data-sample. CED is

considered as weak label for the retrieval task for two reasons:

1. Munkres’ algorithm is suboptimal as it only calculates approximate edit distance val-

ues,

2. the quality of HARG rely on the choice of primary entity selection which can be

noisy.
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Our intuition was graph edit distance (GED) calculation algorithms (A*-search, VJ, or

Beam) would be enough to calculate the number of changes after we have build the HARGs,

but we made following observations.

O4.2.6 Different nodes and edges in HARG have different change cost. User should be

allowed to specify individual property replacement cost.

O4.2.7 GED calculation algorithms differ in speed based on the number on nodes and

HARG contains variable sized graphs.

O4.2.8 Object-properties such as, relation has dependency between different levels of

HARG and should not be considered individually during the change estimation.

For example, for person wearing clothes, edit cost for person and cloth should be

considered together between different data-samples.

O4.2.9 Considering  O4.2.4 , we cannot calculate the edit cost of certain properties just

by replacing or deleting them since they have multiple number of values in their

value-set.

For properties with list values, we consider two types of comparison: (propertyLED)

ordered comparison with modified Levenshtein distance, and (hashComp) unordered com-

parison with hash table. Summing the cost of edits for all the properties between two

data-samples ignores the inter-connected structure among the properties. In Figure  4.1 , the

graph from R2 has two persons, and while comparing with R1 we would want to know the

minimal edit cost by considering which person in R2 is closer to the person described in

R1. Content Edit Distance calculates the cost for the minimal cost alignment of one

data-sample to another. Since only property values in leaf nodes in a HARG have direct

replacement cost, we propose a new kind of vertex in HARG, Entity-with-Property-in-Leaf

(EPL) vertex (Definition  4.2.4 ) for calculating the cost for an individual object assignment.

Given EPL(V ) is the finite set of EPL Vertices, EPL(E) ⊆ EPL(V )× EPL(V ) is the set

of edges, and EPL(l) ⊂ l is the labeling function, a HARG is now defined as:

gepl = (EPL(V ), EPL(E), EPL(l))
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Definition 4.2.4 (Entity-with-Property-in-Leaf Vertices). A node labeled with object-type

(A) with their outgoing edges labeled with object-properties (op) and the connected leaf nodes

labeled with property-values (zp) are considered as Entity-with-Property-in-Leaf (EPL)

Vertex, EPL(V ). A node without any leaf nodes is also considered as an EPL vertex. An

EPL vertex can be connected to other EPL vertices and have their own cost functions.

Munkres Algorithm for CED calculation. We consider the CED calculation as an

assignment problem and adopted the bipartite graph matching method in [ 88 ]. Com-

pared to the exponential time-complexity of A*-search, Munkres’ [ 88 ] algorithm has a poly-

nomial time complexity. Estimating content edit distance instead of a simple property-

to-property comparison allows the flexibility to consider the dependency between prop-

erties and graph levels. Given the non-empty HAR graph from query-example, gq
epl =

(EPL(V )q, EPL(E)q, EPL(l)q) and the HAR graph from the compared data-sample, gc
epl

= (EPL(V )c, EPL(E)c, EPL(l)c), where

EPL(V )q = {u1, . . . , un}, EPL(V )c = {v1, . . . , vm}, the Munkres’ algorithm would output

CED (gq
epl, gc

epl). We made the following adjustments to the Munkres’ algorithm in [  88 ].

1. EPL-vertices in the query graph needs to be aligned to the data-samples, hence we will

fix the assignment size k to |EPL(V )q|.

2. For data retrieval, the entities and relations in query graph needs to be in comparison-

graph, otherwise indicates missing property. So there is no need to add dummy nodes to

gq
epl. Formally, if n > m, only the costs for max{0, m − n} node insertions have to be

added to the minimum-cost node assignment.

3. Next, the n×m cost-matrix C is generated. (1) For different type of objects A in ui and

vj the replacement cost is set to ∞. (2) The cost for a single object assignment Ci,j is

calculated by comparing the property values zp (normal-comparison and list-comparison)

in EPL-vertex ui and vj.

4. To accommodate for  O4.2.5 , while applying Adjacency-Munkres, we set the default cost

of an edge replacement c(eui → evj) based on the Wu-Palmer distance between Synsets of
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l(eui) and l(evj). eui denotes all edges connected to ui and evj denotes all edges connected

to vj. In general, any language embedding can be used instead of Synsets.

c(eui → evj) = 1/wpdist(sl(eui ), sl(evj )) (4.1)

Cumulative-Munkres. Using Adjacency-Munkres from [  88 ] allows us to find the optimal

assignment of each EPL vertex without taking into account the dependency among them

 O4.2.8 . We utilize the levels from HARG to include the dependency information into

the cost-matrix. So for every Ci,j in the cost matrix from adjacency-munkres denoting an

assignment of ui to vj, we add their parent EPL-vertices assignment cost to Ci,j, starting

from EPL-vertices in level-1. In the remainder of this paper, we will call this method

Cumulative-Munkres since it uses the cumulative cost of the parent and child nodes to

preserve the dependency information.

4.2.3 Similarity Measurement

Finally, we propose to use an end-to-end neural network model, SimGNN [  89 ] to learn

an embedding function to map dq and dc into a similarity score based on the CED score.

User requirements (such as, relationships between properties, searching in a time range,

or within a specified location, etc.) and system constraints (such as, different property-

values) are applied with appropriate replacement costs while calculating CED. Similarity

scores for training the model are derived by transforming the distance scores using the

normalization method from [  107 ] and an exponential function on the normalized score. (Line

 37 in Algorithm  3 ). The embedding function outputs a number of interaction scores between

a pair of graphs using Neural Tensor Networks (NTN) [  108 ] on the graph embeddings. For

calculating the graph embedding, first, Graph Convolutional Networks (GCN) [  109 ] are used

on the HARG to obtain the node embeddings. GCN is representation-invariant and allows

us to account for different kinds of labels for nodes and edges, when ground truths are

available. It is also inductive and allows to compute the node embedding for any unseen

graph following the GCN operation, which makes it a great choice for variable sized FemmIR
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graphs. Then, an attention network is used to combine the node embeddings into a graph

embedding allowing to learn each node’s weight in the similarity determination as part of

the end-to-end network. In addition, SimGNN augments the graph level interaction score

with local information by calculating histogram features from a pairwise node interaction

score between the node embeddings. Finally, a multi-layer fully connected network is applied

to learn a single similarity score from the interaction scores, which is compared against the

similarities from the weak-labels or the ground-truths using mean squared error loss.

C = 1
|D|

∑
dc∈D

(ŝ− s(dq, dc))2 (4.2)

where D is the set of data samples from the repository or the stream, ŝ is the predicted

similarity score, and s(dq, dc) is the ground-truth similarity between dq and dc. This similarity

score allows us to rank the data samples against the query example.

4.2.4 FemmIR algorithm

Algorithm  3 presents the pseudocode of our retrieval algorithm FemmIR which takes

two data samples as input and returns the similarity score between them as output.

Line  1 Extract the set of properties and their values, Oj from data-sample dj using the

modality-specific property-identifiers.

Lines  2 -  3 Construct the Hierarchical Attributed Relational Graphs using the identified

properties following the steps in Section  4.2.1 .

Lines  4 -  37 During training, generate the CED as weak label using the Munkres algo-

rithm. CED is used to calculate the similarity score, and this pair of data-samples and the

similarity score is added as training sample for SIMGNN.

Line  5 Discover the EPL-vertices in the HARGs, and define gepl.

Line  6 Initialize an empty n×m cost-matrix C.

Lines  7 -  8 Iterate through all the vertices in EPL(V )q and EPL(V )c and compare the

properties in each vertex to assign the costs.
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Line  9 For different types of object, set the cost to∞, not allowing different types of object

to be aligned.

Line  13 If a property in ui is absent in vj, it needs to be inserted in vj. Increment the

cost-matrix value by the insertion-cost.

Lines  15 -  19 If the property is not a list, then just compare the values in ui and vj. If they

mismatch, add the replacement cost to the cost-matrix, otherwise nothing is added.

Lines  21 -  22 If the property is a list, we need to compare them either with a Levenshtein

distance (ordered comparison) or with a hashmap (unordered comparison) from Section  4.2.2 .

cmpis a control variable to specify what kind of comparison is required. The overall cost is

added to cost-matrix.

Line  25 For applying Adjacency-Munkres, the minimum edge replacement cost is added to

the cost matrix using Equation  4.1 .

Lines  28 -  32 If Cumulative-Munkres is required (set by mType), cost-matrix entry of the

parent vertices are added to each Ci,j.

Line  36 Apply the Munkres algorithm to calculate the optimal assignment based on C, and

the associated cost is the CED.

Line  37 Normalize CEDto the graph sizes, and apply an exponential function to convert it

to a similarity score in the range of (0, 1].

Lines  38 -  39 If in testing phase, apply the learned mapping function, SIMGNN to predict

the similarity score from the HARGs.
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3 Algorithm 3: FemmIR(dq, dc)

1 : Oq ← PROP(dq),Oc ← PROP(dc)

2 : gq ← constructHARG(Oq)

3 : gc ← constructHARG(Oc)

4 : if training then

5 : gq
epl, gc

epl ← discoverEPLV(gq, gc)

6 : C ← φ

7 : for ui ∈ EPL(V )q do

8 : for vj ∈ EPL(V )c do

9 : if TYPE(ui) 6= TYPE(vj) then

10 : Ci,j =∞

11 : fi

12 : for op ∈ ui do

13 : if op /∈ vj then

14 : Ci,j += icost(op)

15 : elseif TYPE(zp) is not list then

16 : // zp(ui) is value of op in vertex ui

17 : if zp(ui) 6= zp(vj) then

18 : Ci,j += rcost(op)

19 : else Ci,j += 0

20 : fi

21 : else

22 : Ci,j += cmp ∗ propertyLED(zp(ui), zp(vj)) +

(1− cmp) ∗ hashComp(zp(ui), zp(vj))

23 : fi

24 : endfor
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3 Algorithm 3: continued

25 : Ci,j = Ci,j + min{
∑

c(eui → evj)}

26 : endfor

27 : endfor

28 : if mType then

29 : for ui ∈ EPL(V )q do

30 : for vj ∈ EPL(V )c do

31 : ûi = parent(ui), v̂j = parent(vj)

32 : Ci,j = Ci,j + Cî,̂j

33 : endfor

34 : endfor

35 : fi

36 : CED(gq, gc) = Munkres(C)

37 : nCED = CED( gq, gc )
(|gq|+ |gc|)/2

SIM(dq, dc) = e−nCED

38 : else

39 : SIM(dq, dc) = SIMGNN( gq, gc )

40 : fi

41 : return SIM(dq, dc)

Generalization.

1. Algorithm  3 assumes that the edge labels for level 0 is fixed to hasEntity and metadata

with granularity (such as, time, location, etc.). These are flexible and can be set to

any labels in FemmIR as long as it is consistent throughout the lifetime of the system.

2. Object-types are assumed to be system-specific, and can be variable across different

systems and applications. FemmIR can handle any labels for entity-type since the
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retrieval result does not depend on it. The comparison between properties are affected

by it which remains valid as long as same heuristics is maintained for all modalities in

a system.

3. FemmIR is capable of handling different replacement costs and insertion costs for

properties in different application domains.

4. For the edge replacement cost, any language embedding will work as long as the ob-

jective function places semantically similar tokens closer to each other.

4.3 Experiments

4.3.1 Dataset

We adopt the MARS person re-identification dataset from [  98 ] to benchmark the prop-

erty identifiers in visual modalities. MARS consists of 20,478 tracklets from 1,261 people

captured by six cameras. There are 16 properties that are labeled for each tracklet, among

which we used - gender (male, female), 9 bottom-wear colors, and 10 top-wear

colors.

Using the above-mentioned datasets, we built the (InciText + MARS) dataset to

evaluate the retrieval performance of FemmIR. The composition statistics for each modality

are:

1. Image (3270/1100/1144),

2. Text (296/178/145), and

3. Video (1454/499/539),

where (*/*/*) stands for the sizes of training/validation/test subsets.

For the ground-truth, we ranked the data samples in ascending order of the penalties for

the mismatched properties. The properties were chosen depending on the user requirement,

and the mismatches were assigned different penalties. In Example  4.1 , an officer searches

in the following order: (1) same gender and race, (2) same bottom clothing, and (3) same

top clothing. The intuition behind this is if there is a gender mismatch, they are definitely
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not the same person. It is possible for a person to change the top clothing in a short span

of time, but it is harder to change the bottom clothing. So even if there is a mismatch on

top color, there is a chance of it being the same person given similar time-span and vicinity.

Therefore, we set the penalty for each mismatched property as follows: rcost(top-color)

= 1, rcost(bottom-color) = 2, and rcost(gender) = 3, with gender having the highest

penalty, hence the highest importance. Exact matches are the top most in the ranking with

a zero penalty.

4.3.2 Settings

We follow the original train/test partition of MARS [ 98 ] dataset for benchmarking. For

models in [  110 – 112 ], we formed a training batch by randomly selecting 32 tracklets, and then

by randomly sampling 6 frames from each tracklet. During testing, F frames of each tracklet

are randomly split into bF
n
c groups, and the final result is the average prediction result among

these groups. We used a validation set of mutually exclusive 125 people selected from the

training set. For color sampling, we used the result from the first frame from each tracklet.

We compared three properties across all models - gender, top color and bottom color.

For the retrieval model, we only considered the synthetically generated part of InciText. For

munkres, we used the API from clapper  

1
 . We did not use the local node-node interaction

information during the training phase for FemmIR.

4.3.3 Benchmarking for Property Identifiers in Visual Modality

Since MARS has a large amount of ground truths for person attributes, we compared

existing models from Person Re-Identification task. From the CNN models, we used the

image-based Resnet50 [ 113 ] as baseline. Due to the temporal nature of videos, we also

compared the 3D-CNN [  112 ], CNN-RNN [  111 ], Temporal Pooling and Temoporal Attention

[ 110 ] models. As a heuristic based model, we chose the color-sampling model from [  35 ].

Figure  4.1 describes the bench-marking results for the compared models. Resnet50 performed

significantly better than other models for bottom-color, while temporal attention worked
1

 ↑  clapper  
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best for top-color. Considering the average performance on all attributes, we choose the

image-based CNN model for the retrieval task. Since the properties in our task are all

motion-irrelevant, the video based extraction models do not have a large impact on the

performance. In terms of training data and time, color sampling surely has an advantage.

Resnet50 needed 513 minutes and the temporal attention model needed 1073 minutes for

training, whereas color sampling has zero training time. Color sampling works by isolating

body regions and evaluating on pixel values, hence the presence of sunlight or clouds may

have adversely affected the performance.

4.3.4 Retrieval Performance of FemmIR

We compared FemmIR with the EARS method [  1 ]. Since EARS does not require any

training, we only used the test set in (InciText + MARS) . We formulated the JOIN queries

in EARS method on properties from Example  4.1 . The results were a union among an exact

match, and partial matches for the individual properties.

For evaluation, we considered cross-modal retrieval tasks as retrieving one modality by

querying from another modality, such as retrieving text by video query (Video Text) or,

retrieving image by text query (Text Image). We also show the comparison for multi-

modality retrieval. By submitting a query example of any media type, the results of all

media types will be retrieved such as (Image All, Text All). We adopt mean average

precision (mAP) as the evaluation metric, which is calculated on all returned results for a

comprehensive evaluation. We consider data samples with CED < 3 in comparison to the

query object, as relevant for that query. This would return contents where persons only

with color mismatches are found.

With an average F1 score of 79.59% for video and image property identifiers, the mAP

scores of image and video queries are 27%-37%. Text modalities with their high-performance

identifiers get the highest mAP across modalities. This indicates the dependence on property

identifier performance. Precision-recall (PR) curves in Figure  4.2a and  4.2b show that at

lower degrees FemmIR perform comparably with EARS, but with higher degrees of recall, the

performance degrades. We will perform ablation studies (using local node-node interaction or
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eliminating imbalance of modalities in training data) in the future for FemmIR performance

improvement.

4.4 Related Works

4.4.1 Metric Learning.

[ 114 ,  115 ] uses hinge rank loss to minimize intraclass variation while maximizing interclass

variation. [ 102 ] minimized the loss function using hard negatives with a variant triplet

sampling, but needs fine-tuning and augmented data. [ 103 ] uses an additional regularization

in the loss function with adversarial learning. [  104 ] enables different weighting on positive and

negative pairs with a polynomial loss function. FemmIR has similarities to metric learning

with the objective of minimizing the edit distance between two graphs. In contrast, FemmIR

re-uses pre-extracted properties and does not require data samples to create positive-negative

pairs.

4.4.2 Weakly Supervised Learning.

[ 85 ,  87 ] use weak signals from entity and relationship similarities retrieved from video

captions and text. [  1 ] assumes knowledge of the translation module which makes it less

adaptable to novel modalities. [ 86 ] uses a similarity-based retrieval technique to extract

images with similar subsurface structures. FemmIR also uses a weak signal approach for

ranking relevant samples from multiple modalities, but the weak labels are constrained to

use the pre-extracted properties and must implicitly maintain the structure between the

entities and relationships.

4.4.3 Semantic Understanding with Encoding Networks.

[ 56 ,  57 ,  116 ,  117 ] learns semantically enriched representations of multi-modal instances by

using global and local attention networks. Similarly, FemmIR uses graph convolutional net-

work [ 109 ] to align the most important nodes contributing to the overall similarity, denoting

the most similar properties between samples.
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4.4.4 Content-based Data Discovery.

[ 1 ,  60 ,  70 ,  96 ,  97 ,  118 ] implement content-based data retrieval by taking user-provided

example records as input and returning relevant records that satisfy the user intent. Our

work shares similarities to DICE [  70 ], which finds relevant results by finding join paths across

tables within the data source. However, it focuses on discovering relevant SQL queries

from user examples, whereas FemmIR focuses on finding the relevant content directly by

finding similar object properties. EARS [  1 ] finds relevant data by applying JOIN queries

on the user-required properties from different modalities. Similar to EARS, we also assume

the knowledge of pre-identified properties. EARS can scale to petabytes of data, but it

needs additional queries to retrieve soft similarities. The number of SQL queries increases

proportionally to the number of properties in the user query. Contrary to EARS, we do not

assume a common schema for all modalities and do not require re-training from scratch to

accommodate new modalities.

4.4.5 Cross-modal Correlation Learning.

[ 52 ,  53 ,  99 ,  119 ] use canonical correlation learning to linearly project the low-level features

into a common subspace. For non-linear projections, [ 54 ,  55 ,  100 ,  101 ,  120 ] extended the

linear methods [  55 ] or used shallow [  54 ,  101 ] or deep networks [ 100 ] to learn the correlations.

SDML [ 121 ] removes the dependency of jointly learning from all modalities by predefining

a common subspace and using a deep supervised auto-encoder for each modality. DSRL

[ 59 ] directly learns the pairwise similarities by integrating relation learning, capturing the

implicit nonlinear distance metric which FemmIR also focuses on. Most of these works

assume the presence of class labels [  53 ,  119 ], choice of appropriate feature extraction, and

translation models for specific modalities. This limits the capability to integrate new sources

or use pre-existing features/properties. FemmIR separates the feature extraction modules

from the retrieval module and integrates pre-identifier property from any modality using

graph encoding networks.
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4.5 Summary and Future Directions

We introduced the problem of mismatch between the information need and model fea-

tures, along with the lack of annotated data for multi-modal relevance. To this end, we

presented FemmIR, a framework that uses weak supervision from a novel distance metric for

data objects, and uses explicitly mentioned information needs with existing system-identified

properties. We demonstrated the performance of FemmIR in identifying the relevant data

to the user example without supervised training and additional computational resources.

FemmIR has successfully implemented a missing person use case and is being updated to

provide further assistance to local agencies in social causes. In the future, we plan to ex-

tend FemmIR to include multi-objective and evolving information needs to support more

real-world use cases.
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Table 4.2. Performance of EARS and FemmIR in mAP(%)
Query Target EARS FemmIR
Image Text 0.54 0.40

Image 0.27 0.27
Video 0.33 0.29

All 0.30 0.28
Text Text 1.0 0.52

Image 0.37 0.29
Video 0.46 0.33

All 0.43 0.31
Video Text 0.62 0.43

Image 0.30 0.29
Video 0.37 0.30

All 0.34 0.30
Avg 0.44 0.33
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Figure 4.2. Performance of FemmIR on (InciText + MARS) .
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5. WEAKLY SUPERVISED JOINT EMBEDDING FOR

MULTI-MODAL INFORMATION RETRIEVAL (WeSJem)

We present WeSJem, a weakly supervised open-learning framework for jointly learning data

representations from all modalities in a shared low dimensional vector space, by exploring

the structural components of the data samples. The framework characterizes and formulates

responses to different novelties encountered during multimodal retrieval from unknown ap-

plication domains, user requirements, or temporal changes. WeSJem follows a three-step

process: (1) Different modalities of data are translated to textual descriptions. (2) Weak

similarity labels are generated among data samples by comparing topics and different struc-

tural elements (entities, relationships, and events) of the text. (3) Vector representations

are learned for the data samples in the joint embedding space by exploring the relationships

among the topics and structural elements. We address the supervision bottleneck problem,

and show that topics and structural features can be used as a weak-supervision source, as

well as provide a better semantic representation for retrieval of similar multi-modal data.

Initial experiments are conducted using documents and videos as multi-modal sources, and

topic as weak labels. In comparison to unsupervised methods, LSI and LDA, our model

showed promising performance to capture the similarities in the low dimensional space.

5.1 Introduction

Finding relevant data from large data sources is the pre-requisite for any data analysis

task. Current data discovery systems require human hours to sift through the large influx

of multi-media data (e.g., text, image, video, audio, and 3-D model) for data preparation

task. Multi-modal information retrieval takes queries in one modality to retrieve relevant

data from other modalities, augmenting information from a single source with information

from other sources. Cross-modal retrieval results can be improved if context is introduced

in learning the relevance. For example, uploading the image of a person in google search

returns images of similar cloths that the person is wearing. User experience would improve
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if the search results include the images of similar cloths, videos of people wearing similar

cloths, or places where these kind of cloth can be purchased.

Previous works on multi-modal information retrieval have followed the idea of projecting

modality-specific features from different modalities into a shared embedding space. [ 53 – 55 ,

 99 ,  100 ,  119 ,  120 ] focuses on correlation learning to learn the projection function, using both

pairwise information and class labels. [  121 ,  122 ] uses auto-encoders to find correlations.

Metric learning methods [  56 ,  102 – 104 ] learn a distance function over data objects based on

a loss function. Attention mechanism [  56 ], [  123 ,  124 ] proposes pre-training models for better

generalization. While the aforementioned learning methods exhibit good performance on

benchmark datasets, they suffer from the lack of labeled training samples for data discovery

in practice. In open world environment, test data distribution is almost always different

from the training data distribution. Current works do not focus on the noise in the input

data, or the data relevance change over time. Many of the learning methods focus only on

uni-modal or bi-modal retrieval, and cannot generate results for queries of all media types.

Moreover, most of the above models suffer from the lack of explainable reasoning on how

two different multimedia data are similar.

We propose a Weakly Supervised Joint Embedding model (WeSJem) for multi-modal

information retrieval. Our model adopts the metric learning approach [ 125 ] as the backbone,

and proposes to build a data information network as the weak signal generator. It has

four components, including a translation module, a weak label generator module, a data

information network, and multi-task learning. In detail, we first generate a dense video

caption from the videos using a proposal and captioning module. Then we learn the weak

labels using existing single modal encoders and text feature extractors. The separate stream

design allows scalability to very large datasets in retrieval tasks. Finally, we create a data

information network among all different modalities in terms of their similar features. A multi-

task joint objective performs on the network, which aims to learn better representation for

each data sample while maintaining multiple degrees of similarity among them. The objective

function aims to maintain the inter-connection between different data modalities based on

their structural features. Even in the absence of the weak labels, the objectives can be
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adapted to be trained in an unsupervised setting. The translation module and the weak

label generation module are independent of the embedding architecture and can be replaced.

5.2 Related Works

Correlation Learning. Traditional cross-modal retrieval models focus on correlation learn-

ing to project data instances into a latent common subspace. [  99 ] implements linear pro-

jection using canonical correlation analysis to optimize only the pairwise information. [  53 ]

learns the common features using class labels as a linkage to model correlations. Joint rep-

resentation learning [ 119 ] constructs graphs to jointly model the correlation and semantic

information with sparse and graph regularization. For non-linear projection, deep Canon-

ical Correlation Analysis (DCCA) [  120 ] uses modality specific subnetworks. [ 55 ] extends

DCCA with an auto-encoder regularization term. Multi-view Deep Network [  100 ] uses a

view-specific and a common sub-network to learn the common space. [  54 ] overcome using

only shallow networks for common stage with hierarchical networks.

Metric Learning. [  114 ] proposes a deep coupled metric learning approach with two hi-

erarchical non-linear transformations. [  115 ] used a hinge rank loss as objective function to

map visual and semantic features into the shared space. [ 102 ] minimized the loss function

using hard negatives with a variant triplet sampling. [ 103 ] introduced an additional regu-

larization in the loss function with a modality classifier as part of the adversarial learning.

[ 104 ] enables different weighting on positive and negative pairs with an universal weighting

framework and a polynomial loss function.

With recent advancements in encoder-decoder networks [ 126 ,  127 ], [  123 ,  124 ] provides

a solution of pre-training the model on a large scale dataset. [  122 ] used correspondence

autoencoders to find correlations between images and text. [  121 ] removes the dependency of

jointly learning from all modalities by predefining a common subspace. [  59 ] avoids explicitly

learning a common space by integrating relation learning. [  61 ] computes modality specific

similarities with neural tensor networks. [ 56 ] uses attention mechanism to align multimodal

embeddings learned through a multimodal metric loss function. [  128 ] describes a unified

framework for formal theories of novelty in learning algorithms, which is applied towards
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different domains, including multi-agent game, and open world image recognition. [ 129 ]

discusses a self initiated open world learning agent with the example of a conversational bot

in a hotel. [  130 ] discusses characterization and changes of environments in which a radically

autonomous physical agent can operate.

Most of these models require annotated labels specifying which data samples belong to

the same category. The novelty frameworks does not explain information retrieval as a do-

main. WeSJem has close resemblance to metric learning and intermediate fusion approaches.

Our approach differs from existing works in terms of representation learning methodology

and independent module flexibility. Like [  117 ], we also use modality specific encoders for

translation module. The main difference in our proposed metric learning approach lies in

building the data information network, and using the structural features as weak labels. Our

method does not require annotated labels and we choose the positive and negative pairs such

that similarity in structure is maintained. This work has the capability to take both the data

instance and data features as query. WeSJem is capable of not only encoding the ontological

information, but also pairwise and semantic information, if available.

Discussed existing works on retrieval task assume similar training and testing data dis-

tribution, and do not reflect on the novelties encountered during test. Existing works on

novelty theories have proposed well-established frameworks, but to the best of our knowl-

edge, this is the first work to formalize novelties in a domain with heterogeneous training

instances and user-system interdependence.

5.3 Methodology

5.3.1 Problem Formulation and Overview

Multi-modal information retrieval is defined as retrieving the results of all modalities by

submitting a query of any modality. Existing works tackle the problem in two phases: cross-

media feature learning, and similarity measurement. The main contribution of this work is

in cross-media feature learning. Formally, we consider the problem of information retrieval

from a dataset D with a collection of data from m modalities. We denote the j-th sample
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of the i-th modality as xi
j. Modalities can include text documents, tweets, video snippets,

images, and others.

The main goal of this work is to jointly learn high-quality vector representations for

individual data samples from unlabeled multi-modal data set. We design our embedding

function F to map the multi-modal data samples into a low dimensional vector space, such

that multiple degrees of similarity are preserved in the embedding space. During inference,

the similarity between two projected data samples sim(F(xv
p),F(xt

q)) will be measured in

the joint space, using the existing methods such as the Cosine or the Euclidian distance.

Our main insight is that representing data in terms of different structural features through

which different modalities of data can be similar, can provide us with a source of weak super-

vision for cross-modal retrieval. Our motivation comes from how structural representation

of a raw unstructured text allows readers to infer better knowledge. Structural representa-

tion of a document entails topics, entities, events, and relationships in the document. Let

A = {A1, A2, . . . , An} be a set of corresponding features from each data sample. The k-th

value of a feature p is denoted by Ak
p. Features consist of topics, metadata, and mid-level

structural units (entities, events, relationships etc.) of a data sample that can infer further

higher order structures from them in a bottom-up manner. The goal of using topics and

structural units as features is to infer an explainable understanding of how different data

samples are similar (or, dissimilar). A data sample xi
j is a combination of any subset of A.

Features are generated automatically in two steps - 1) a textual description of each data

sample is generated from any modality; 2) topics, entities, and events are extracted from the

textual descriptions and are considered as weak labels for two reasons. First, the quality of

the extracted structural units rely on the choice of the extraction models, and can be noisy.

Second, output generated from the modality specific textual descriptors can be ambiguous

and noisy.

For our approach, first, we utilize the existing neural network approaches to find a trans-

lation from different modalities of data to a textual representation. Then, we create a data

information network by connecting data samples to their features via their interactions. Fi-

nally, we construct a structure-infused textual representation, by jointly embedding in a

single space the data samples, the features in which these data samples are similar, and the
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Figure 5.1. Architecture for Weakly Supervised Joint Embedding for Multi-
modal Information Retrieval. Translation module is a two-level dense video
captioning model from [ 131 ].

similarity labels associated with them. We define a multi-task learning objective capturing

the interaction information, by aligning the representation of the data samples, defined by

their textual content, with the representation of structural features, based on their on their

common relations. Moreover, we formalize novelties or data shift that occurs during test

time for retrieval task. We also characterize novelties and include appropriate response for

different types of novelties.

5.3.2 Translation Module

Videos → Textual Description. To extract an initial representation of videos, we

resort to dense video captioning (DVC). We will use a version of dense video captioning

described in [ 131 ]. DVC localizes distinct events in video streams and generates a description

for that. As a feature extraction stage, it uses 3D convolutional network (C3D) to encode all

incoming frames. For identifying the event boundaries, maintaining the temporal information
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is important and [ 131 ] preserves this using convolution and pooling in spatiotemporal space.

Using the features from the first stage, in the proposal network, variable-length temporal

event proposals are generated and in the final captioning module, they generate a caption

for those proposals.

After we have a caption for the whole video, we create the information network from the

textual descriptions of all the data samples.

5.3.3 Information Network across Data Samples

There are multiple direct relationships among the data samples and their features. Fea-

tures can have semantic relationships between them. We define a simple data information

graph G = {V, E} consisting of several different types of vertices and edges, as follows -

• Let AT ⊂ V denote the set of the topics.

• Let An ⊂ V denote the set of the named entities. An is derived from a knowledge base

such as, NELL [  132 ], YAGO [ 133 ], Wikidata.

• Let Aevent ⊂ V denote the set of the events. Aevent is a sentence describing certain real

world events.

• Let x ⊂ V denote the set of the data samples. x has a data modality attribute.
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• Let Asim ⊂ V denote the set of user defined similarity labels.

The graph vertices are connected via a set of edges described hierarchically, as follows:

• ExAT
⊂ E: All data samples are connected to their corresponding topics. Note that a

data sample can be connected to more than one topic.

• ExAevent ⊂ E: All data samples are connected to the events that it describes.

• ExAn ⊂ E: All data samples are connected to the entities it describes. Note that an

entity may be described by many different data samples.

• ExAsim ⊂ E: If user has defined a similarity between two data samples, both of them

are connected to that similarity label.

In addition to the relations expressed in the graph, all the graph nodes are also associated

with textual content. Let Atext denote the set of the textual representations of the data

samples. Topics, entities, similarity label, and events also have their own text representation.

5.3.4 Multi-Task Learning

After we have defined the information graph, we need to design the embedding function to

map the graph objects into a low dimensional vector space, such that the graph relationships

are preserved in the embedding space. In the embedding space, the relations originally

defined over the vertices in the information graph are expressed as a similarity score between

the vectors representing these vertices. The relationships between the features themselves

are also expressed as a similarity score between the vectors representing them. To force

these relationship constraints on the data samples, we consider this as a multi-task learning

problem, over all the relations in the graph. Jointly learning over all the relationships allows

the weak labels to propagate through elements and enforce multiple degrees of similarities.

For example, if a document and a video, or two documents have same topic, they should

have similar embedding. In parallel, if the two data samples are discussing about the same

event, they should have similar embedding. Our embedding function should jointly reflect

these similarities.
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For each individual graph relation, R, we can define the learning objective as follows:

LR =
∑

i
L(oi, sp

i , sn
i ) (5.1)

L(oi, sp
i , sn

i ) = y log sim(oi, sp
i )) + (1− y) log(1− sim(oi, sn

i ))) (5.2)

where sim(oi, sp
i ) = σ(eoi · esp

i
); sim(oi, sn

i ) = σ(eoi · esn
i
)

In equation  5.1 , for each object, oi in the graph participating in relation R, sp
i and sn

i

refers to positive and negative examples, respectively. eoi refers to the vector embedding

of the graph object oi, and y is the label. The objective of the model is to maximize the

similarity with a positive example and minimize the similarity with a negative example. So,

y = 1 for (oi, sp
i ) pairs and y = 0 for (oi, sn

i ) pairs since they have been sampled from the

noise distribution.

Next, we introduce different learning objectives associated with different relations.

Features to Features (AT AT /AnAn/AeventAevent): These objective functions place the

same type of features with similar context together in the embedding space. The similarity

in context refers to similar word or sentence embedding. If the topics, named entities, or

events have embedding value within a certain threshold, they are considered similar.

Data Sample to Data Sample (xDxV /xDxD/xV xV ): Currently, in this work, data

samples refer to videos (xV ) and documents (xD). This objective function maximizes the

similarity of the data samples pair (xi, xj) with the motivation that data objects discussing

about similar events between similar entities on similar topics should be semantically similar.

We select the positive pairs for respective objective function in following ways:

1. xxtopics. If data samples are annotated and topic annotations are available, we pair the

data samples which belong to the same group.

2. xxevents−entities. For named entities and events, we can consider them together to select

the pairs since entities separately does not contribute towards two document or videos

being similar. So, data samples discussing about common events between a threshold

number of common entities belong to the same pair.
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3. xxlabel. Two data samples with a user-provided positive similarity between them should

have similar embedding.

4. xxembedding. If initially two data samples have text embedding representation (atext ⊂

Atext) within a certain threshold, they are placed in the same embedding space. The

threshold is determined empirically for each application domain.

Data Samples to Features (xAT /xAevent/xAn): This objective tends to maximize

the similarity of data samples to their features. For example, if we only consider topics as

the only feature, we want to place the data samples belonging to a certain topic closer to

that topic. In the embedding space, the data sample vectors should be closer to the topic

embedding vectors.

Joint Objective Function. Finally, we combine the loss functions of all the learning

objectives to define our joint embedding loss function. The set of possible learning objectives,

O = {AT AT , AnAn, AeventAevent, xDxV , xDxD, xV xV , xAT , xAevent, xAn} is expandable as

we consider more features in future. We experimented with different combinations of these

objective functions. So, the combined loss function is

Ltotal =
∑

i∈Os,Os⊂O

λiLi (5.3)

Here, Os refers to the selected objective functions and λi refers to the weight applied to the

objective function i. For our experiments we set the value of λi to 1 for all the objectives.

Initial Representation of Graph Elements: For all objects in the graph, the ini-

tial representation is chosen from different representations for text. We experimented with

different initial representations for text, and then use a hidden layer to map the initial repre-

sentations in the joint embedding space. This linear layer filters out the important features

from the initial representation for the joint embedding. For an initial representation, t of a

text, the hidden layer computes its embedding e as follow.

e = f(Wt + b) (5.4)
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5.3.5 Reasoning Over the Data Information Network

Our end goal is to use the vector representations of the data samples and features to

extract all relevant data samples from the database given a particular data sample. The

relevance can be defined directly over the embedding space, by comparing the similarity

of the vectors representing respective data samples. We can calculate a relevance score by

taking the graph structure into account, by exploiting inter-dependencies among features.

Weak Supervised Baseline.

To use the information graph that we built, we use the information from graph directly

without any learning. This is achieved by counting the paths from one data sample to a given

data sample or a given feature. Let P (a, b) define the set of paths from given data sample

a to another data sample b. Each path is associated with a weight w. Weights are assigned

to each path considering the features that exists in the path. Initially, we can consider all

weights to 1. But in reality some degrees of similarity have higher precedence. For example,

a user defined similarity should have the highest priority. We hypothesize the following

feature order to assign the weights based on the priority assigned by domain experts -

Asim > Atext > AT > Aevent, An | Au (5.5)

So a path with ExAsim has a higher weight than a path with ExAtext . Given the graph G,

edges connect a data sample to its features, and then features to other data samples having

the same features. The relevance score between a and b is then defined as:

Rel(a, b) =
∑

i∈P (a,b) wi∑
b∈B

∑
i∈P (a,b) wi

(5.6)

where B is the set of all the data samples in the database.
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In case we need to find all the data samples given a feature, we can retrieve them directly

from the graph structure. Let Np(f, b) define the number of paths from given feature f to a

data sample b. The relevance score between f and b is then defined as:

Rel(f, b) = I ∗Np(f, b) (5.7)

where I is an indicator variable. I = 0, if there is no path between f and b, otherwise I = 1.

Similarity Based Score.

Given a data sample, or a feature a and their embedding ea the relevance score with

other data sample b with embedding eb is:

Rel(a, b) = sim(ea, eb) (5.8)

where sim() is the cosine distance between the vectors representing the given data sample,

or feature and the other data sample.

5.4 Experiments

The first set of experiment compares the embedding approach for single modality infor-

mation retrieval (text → text) when there is only topics are available as feature. We call

this model Data with Topics to Data Vectors (DT2DVec). We experimented with the

following representations for caption document of videos, documents, and topics -

• random initialization of the document,

• average of pre-trained GloVe word embedding (300d) of filtered tokens from the doc-

ument,

• Skip-Thought [ 134 ] for capturing the global context of the document,

• BERT-Base uncased model for generation of text representation T from the token

sequence t of the document.
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These initial representations are mapped into a hidden layer to map them into the joint

embedding space as part of the retrieval model, as shown in equation  5.4 .

5.4.1 Negative Sampling

As in [  135 ], we used negative sampling to train the model. Our goal is to minimize the

similarity of the target object, oi and samples drawn from the noise distribution, Pn(oi) with

k negative samples for each data sample. DT2DVec investigated with a number of choices

for Pn(oi).

1. Following [  135 ], we pick Pn(oi) from the uniform distribution of the objects in the

dataset. Objects in the dataset consist of the documents from video captions, text,

and topics of the texts and videos. The uniform distribution of the objects in the

dataset d is U(d) raised to the 3/4rd power with U(d) being the frequency of objects

in the respective dataset. Documents are different from words, as words can appear

multiple times in a document where often documents do not appear multiple times in

a dataset.

2. Given, we have the annotated topics for documents, we consider the noise distribution

of each topic t, Pn(t) from the document samples of other topics. Any data sample

that is not annotated with topic t belongs to Pn(t).

For batch training, DT2DVec adopted the following approaches: (2a) Let us assume there

are p number of positive pairs in a batch, and the set of topics of these pairs is POST . If

the mode of POST is topic t, then we pick negative examples from Pn(t) for this batch. The

intuition behind the approach is the closer graph objects in the embedding space should have

similar distribution; (2b) We select variable number of negative examples for each batch.

Negative examples are selected from Pn(t) of each topic in the positive pairs, weighted by

the number of positive pairs from each topic.
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Table 5.1. Performance Comparison Results of DT2DVec
LSA LDA DT2DVec

Inter-similarity 0.76 0.66 0.61
Intra-similarity 0.45 0.28 0.047

5.4.2 Dataset and Experimental Setup

For the performance evaluation of DT2DVec, we used the 20 Newsgroups dataset [ 136 ]

with twenty annotated topics. We compared DT2DVec with two baseline topic modeling

approaches - LSA [ 137 ] and LDA [  138 ]. For evaluation, we split each document into two

parts, and test if (1) the topics of the first half are similar to topics of the second half

(inter-similarity); (2) halves of different documents are mostly dissimilar (intra-similarity).

We use cosine similarity to measure the difference between the two vectors of half document

topics. For inter-similarity, higher similarity score is better. For intra-similarity, the lower

the similarity, the better the vectors are. We present the result for the random initialization

of initial representation of text in Table  5.1 . We used Pytorch [  139 ] with binary cross

entropy to train the unsupervised retrieval model. Mini-batch gradient descend was used for

optimization with SGD [ 140 ].

5.4.3 Results.

(DT2DVec - Rand) performed significantly better in recognizing the dissimilar doc-

uments than the baseline models, LSA and LDA. There was around 43% improvement in

similarity score for dissimilar documents whereas LSA outperformed our method by 10%

for simiar documents. Figure  5.3 shows the embedding space of the documents using the

DT2DVec model.
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5.5 Conclusion and Future Works

This paper proposed a weakly supervised open world learning framework for multi-modal

information retrieval. Our methods involve no human annotation, show promising perfor-

mance compared to unsupervised approaches, and formalize novelties encountered during

testing. In the future, we would test our novelty characterization, detection and adapta-

tion framework with different datasets. We would also include different modalities in our

framework, and would test the capability of the framework for domain generalization.
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Figure 5.3. t-SNE Embedding of Documents using DT2DVec with Random
Initial Representation of Text
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6. UNCERTAINTY MANAGEMENT IN DATA-DRIVEN

APPLICATIONS

6.1 Formalization of Novelties in Multimodal Information Retrieval

In this work, we discuss and formalize novelties in multimodal retrieval task in terms

of data shift. As part of our framework, we add a novelty detection and characterization

criterion. Finally, we design a pre-training strategy for handling out-of-distribution inputs. It

has three parts in our setting. We pretrain the video encoder separately on video captioning

task. The weak label generation does not need any pre-training. Then the graph object

representations will be pre-trained under the relationship objectives in the final stage.

6.1.1 Task Definition

Existing works in multi-modal information retrieval defines it in several different ways.

In supervised setting, following our previous notations, Let the training data be Dtr =

{(xi
j, yi

j)}
ni
j=1, where ni is the number of samples in i-th modality, xj ∈ X is a training example

following the training distribution Ptr(x). yj ∈ Ytr is the corresponding class label of xj and

Ytr is the set of all class labels that appear in Dtr. Each modality have their own training

distribution Ptr(xi), but for simplicity purpose, we are going to denote training distribution

as only Ptr(x). For unsupervised setting, yj is absent in Dtr. In our weakly supervised setting,

class labels are still absent, but the extracted features act as weak labels and amplifies sim-

ilarity signal among data samples through the network structure. The retrieval task refers

to estimating probability of a data sample being relevant to a query given the data sample

and a query sample, P (R | xp, xq), where xp, xq ∈ X, and R is the corresponding relevance

label.

6.1.2 Data Shift in Multimodal Data Retrieval Task

Following the discussion in [ 129 ] and [ 141 ], we define the three main types of data shift

that can happen during testing for Multimodal Data Retrieval Task.
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Covariate shift refers to the distribution change of the input variable x between train-

ing and test phases, i.e., Ptr(R | xp, xq) = Pte(R | xp, xq) and Ptr(x) 6= Pte(x). This can refer

to change in application domain while still dealing with the same modalities in Ptr. This

also can occur if user starts to phrase their queries differently.

Prior probability shift refers to the distribution change of the class variable y, or

the relevance variable R, or the weak feature variables A, i.e., in our framework, Ptr(xp |

R, xq) = Pte(xp | R, xq) and (Ptr(R) 6= Pte(R) or Ptr(A) 6= Pte(A)). In WesJem, this includes

not having extracted weak features from a data sample during testing.

Concept drift refers to the change in the posterior probability distribution between

training and test phases, i.e., Ptr(R | xp, xq) 6= Pte(R | xp, xq) and Ptr(x) = Pte(x). This can

be a temporal effect or user requirement has changed over time.

Besides the three types of data shifts, multimodal retrieval faces one other type of change

during testing, i.e., data samples that do not belong to the modalities that the framework

can handle. These are novelty or novel instances. This is closely related to covariate shift

and some framework may handle novel instances as part of a known class.

6.1.3 Novelty Detection in WeSJem

We use the data information network to detect the changes between pre-novelty and post-

novelty environments. During inference with a novelty introduction, after the translation

and weak feature extraction, we have the post-novelty graph. We can use existing node

discovery techniques to detect change from the training time information network. In case

of a novel modality, our proposed framework would either identify the new weak features

(different from training time), or tackle the new modality as part of the training distribution.

In the later case, we may see a decline in the model performance.

Definition 6.1.1. (Novel Instance). A test instance x is novel if G(VPtr+x, E) is different

from G(VPtr , E). This can be explained as having a knowledge base for the weak features

during training time (Atr). If during inference, we discover weak features that are absent in

Atr, we consider the instance as novel.
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6.1.4 Novelty Characterization for Multimodal Information Retrieval

Definition 6.1.2. (Characterization of Novelty). Characterization of Novelty is the

description of the novelty, according to which appropriate course of actions are taken to

respond to the novelty. We characterize novelty based on the data shift variations -

1. Covariate shift with change in application domain with the modalities for which trans-

lation module is available (covar-1).

2. Prior probability shift with novel weak features (prior-1).

3. Prior probability shift with no weak features (prior-2).

4. Prior probability shift with novel relevance label (prior-3).

5. Temporal concept drift with previously relevant data being non-relevant (concept-1).

6. Covariate shift with new modality introduction (covar-2).

6.1.5 Novelty Response in WeSJem

For a generalized response, we propose to build a pre-trained retrieval model from WeS-

Jem to deal with the out-of-distribution (OOD) inputs. We adopt a three level training

strategy for our model. For the first stage, we pre-train the translation module (DVC) with

video captioning and video retrieval task, following the strategy in [ 123 ] and [  142 ]. JEDDi-

Net is trained on both the ActivityNet Captions [  143 ] dataset and MSR-VTT [  142 ] dataset.

MSR-VTT has open domain video clips, and each clip has 20 captioning sentences labeled

by human. For both cases, we used the SPN module from [  142 ] trained with the temporal

annotation of ground truth segments in the ActivityNet Captions dataset with Sports-1M

pretrained C3D weight initialized in [  144 ]. For the text encoder, we choose between the

pre-trained BERT [  126 ] Base uncased model and the pre-trained skip-thought model [  134 ].

Next, we extract the weak features from the dense captions and document text using topic

and event extraction models such as [ 145 ,  146 ]. Finally, we train our weakly supervised

model using the joint objective loss function.
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During inference, the translation module is able to generate captions for OOD inputs,

which includes input from new modalities as in (covar-2), i.e., image or LIDAR. Both image

and LIDAR modality can be handled as a variant of the video translation module. Both

BERT and skip-thought can generate text embedding for any textual input. This takes care

of the novel weak features (prior-1). Finally, the linear layers in WeSJem would be able to

map the OOD inputs into the pre-trained joint embedding space. The final similarity score

between data samples in the embedding space would produce the relevance between new

samples.

With the encounter of a (prior-2) novelty, if the system is allowed to learn, in proposed

joint embedding model, the set of selected learning objectives becomes,

Os = {xDxV , xDxD, xV xV }

where only the xxembedding objective function is considered, as each data sample would

include an initial representation from the textual descriptions.

Finally, when encountered with any of the last three types of novelties, an information

retrieval system needs to re-learn. In case of a novel modality introduction, the long-time

response is to learn or gather a new translation method. In our model, we include this as

a Relevance Feedback module. The new relevance label provided by a human annotator

holds more importance than previous relevance labels. To make a distinction between this

newly provided label and old label between (xp, xq), during re-training, we encode this by

assigning more priority to the new similarity label, Anew
sim > Aold

sim.
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7. CONCLUSION

This dissertation provides comprehensive study of strategies to enhance data-driven decision

making and multimodal information retrieval in open-world dynamic environments. The

research addresses various challenges related to heterogeneous and missing data sources,

scalability, data integration, relevance learning, and uncertainty management, aiming to em-

power decision-makers in extracting valuable insights from diverse multimodal data sources.

One of the key contributions is the introduction of the SKOD framework, which enables

the continuous building of a multimodal relational knowledge base and facilitates the deliv-

ery of decision-making information from various data sources. SKOD effectively addresses

scalability and data completeness challenges by utilizing streaming brokers and RDBMS ca-

pabilities. It leverages semantic features as a powerful content representation and ensures

continuous delivery of data while adapting to user interests and missing modalities over time.

For data integration, it relied on schema mapping and mediator based SQL-JOIN for a scal-

able data delivery and exact matching with EARS. Additionally, a novel human attribute

recognition model is developed to extract fine-grained properties from unstructured text,

specifically addressing human attribute extraction. This model outperforms standalone lan-

guage models in detecting attributes, thereby contributing to more accurate and intelligent

text processing for human consumption. Real-world system prototypes are built to assist law

enforcement officers in automating investigations and finding missing persons, demonstrating

the effectiveness of the proposed framework.

To handle data integration challenges in open-world applications, we introduced the

FemmIR approach, using deep neural network which employs feature-centric multimodal in-

formation retrieval with graph matching and delivers a ranked list of relevant data to user

information need. We also proposed a weakly supervised representation learning approach,

WeSJem, for learning an embedding function from features of disconnected sources, elimi-

nating the need for annotations. FemmIR performed comparatively with EARS while using

the historical queries and achieving an approximate matching.

Our final contribution for decision making information extraction from multimodal data

was to charaterize uncertainties in a dynamic environment based on data drift. Novelty
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detection and adaptation techniques are proposed within the WeSJem framework. Further-

more, we proposed methodologies for measuring novelty difficulty in planning domains [  147 ]

and a novel intrinsic complexity metric in distributed perception domains [ 148 ]. These met-

rics provide insights into the adaptability and complexity of learning-based decision making

in dynamic environments.

Overall, the contributions presented in this dissertation provide valuable advancements in

extracting decision-making information from diverse multimodal data sources in open-world

environments. The proposed frameworks, models, prototypes, and metrics offer practical

solutions to the challenges faced in real-world applications, ultimately enhancing decision-

making processes and adaptability in dynamic and uncertain scenarios.

7.1 Future Works

Based on the conclusions drawn from the current research, my future goals are centered

around addressing the lingering research questions in data-driven decision making: (1) How

to model users information need in a robust and efficient manner? (2) How to avoid bias,

increase trust and privacy in recommended results?

To complete the life-cycle of situational knowledge delivery, we still have the following

challenges in modeling users information need: (1) user requirement is not always obvious or

explicitly stated, (2) user can be interested in multiple types of events and knowledge bases

with varying probabilities, (3) learning algorithms need to adapt to changing user preferences

with time. I aim to develop novel algorithms using techniques such as active learning and

reinforcement learning that can accurately capture and predict users preferences based on

their behavior, interactions, and feedback. I aim to jointly model user preferences with the

source content and context to deliver more accurate situational knowledge. Understanding

the features that drive user preferences, and leveraging this knowledge to improve personal-

ized recommendations and user experience, has applications in education, student advising,

classroom teaching, e-commerce, healthcare, etc.

With the rise in the volume of multimodal data being generated and consumed, there is an

emerging demand among users to comprehend the factors underlying recommendations, as

147



well as the significance and reliability of the information they are accessing. This is especially

important in sensitive domains such as healthcare, finance, and legal decision-making to allow

for tracking, cross-checking with social contexts, and verification. To address that, I aim to

connect our proposed data integration and adaptability models with explainable models and

trustworthy AI.

My long-term goal is to create intelligent systems that can reason, learn and cooperate

with humans to improve the standard of living by utilizing the vast amounts of data available

in the modern era. My focus is to devise new algorithms and methods that can make a

significant impact on society, leverage existing scientific advancements, and address real-

world challenges.
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