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Abstract

Motherboard defect detection is critical for ensuring re-
liability in high-volume electronics manufacturing. While
prior research in PCB inspection has largely targeted bare-
board or trace-level defects, assembly-level inspection of
full motherboards inspection remains underexplored. In this
work, we present BoardVision, a reproducible framework
for detecting assembly-level defects such as missing screws,
loose fan wiring, and surface scratches. We benchmark
two representative detectors - YOLOv7 and Faster R-CNN,
under controlled conditions on the MiracleFactory moth-
erboard dataset, providing the first systematic comparison
in this domain. To mitigate the limitations of single mod-
els, where YOLO excels in precision but underperforms in
recall and Faster R-CNN shows the reverse, we propose a
lightweight ensemble, Confidence-Temporal Voting (CTV
Voter), that balances precision and recall through inter-
pretable rules. We further evaluate robustness under re-
alistic perturbations including sharpness, brightness, and
orientation changes, highlighting stability challenges often
overlooked in motherboard defect detection. Finally, we re-
lease a deployable GUI-driven inspection tool that bridges
research evaluation with operator usability. Together, these
contributions demonstrate how computer vision techniques
can transition from benchmark results to practical quality
assurance for assembly-level motherboard manufacturing.

1. Introduction
Motherboards are the backbone of modern electronics, and
their reliability is essential for large-scale manufacturing.
Even subtle assembly-level defects such as missing screws,
loose wiring, or scratches, can compromise system reliabil-
ity and incur significant costs. Automated optical inspection
(AOI) has long been used to detect surface-level anoma-
lies, but most prior research and industrial solutions have
concentrated on bare-board or trace-level PCB inspection
[1, 11, 12], leaving motherboard inspection comparatively
underexplored.

Deep learning has advanced vision-based inspection
with detectors such as Faster R-CNN [15] and YOLO vari-
ants [20]. Extensions of YOLOv7 [2, 16, 22, 23], YOLOv5-
based models [17, 18], and SSD variants [9] have shown
strong results for PCB and related defects. But most studies
end with accuracy reports on curated datasets, with limited
focus on robustness to factory perturbations like lighting,
blur, or orientation [14], and few translate into deployable
operator-facing systems.

Single detectors also exhibit trade-offs: higher precision
or higher recall, but rarely both are achieved together under
imperfect dataset distributions. Leveraging multiple models
together in a lightweight voting ensemble could provide a
more balanced trade-off, motivating our design.

To address these gaps, we introduce BoardVision, a
reproducible motherboard defect detection framework de-
signed with both research benchmarking and industrial de-
ployment in mind. Our contributions are four-fold:
1. the first controlled benchmarking of YOLOv7 and Faster

R-CNN on an assembly-level motherboard dataset (Mir-
acleFactory) [21],

2. the first robustness-oriented ensemble in this space, a
lightweight Voter model with interpretable rules that bal-
ances precision and recall across detectors under diverse
perturbations,

3. comprehensive robustness evaluation under sharpness,
brightness, and orientation perturbations, and

4. the first deployable GUI-driven inspection system for
motherboard defects, capable of both live and offline in-
ference.
By uniting rigorous benchmarking, robustness evalua-

tion, and practical deployment, BoardVision demonstrates
how vision research can transition from isolated metrics to
meaningful, real-world quality assurance.

2. Related Work
Automated inspection of bare-board and trace-level printed
circuit boards (PCBs) has progressed from rule-based tech-
niques such as template matching and pixel differencing,
which were fast but brittle to lighting and alignment vari-
ations [1, 12], to classical machine learning approaches
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that relied on handcrafted descriptors such as HOG and
SIFT with classifiers like SVM or k-NN [4, 5]. While
these pipelines achieved moderate accuracy, they struggled
particularly with subtle or small defect classes and were
quickly surpassed by deep CNN-based methods [5].

Deep learning has since become the dominant paradigm,
with convolutional detectors applied across public PCB
datasets such as DeepPCB [19], DsPCBSD+ [10, 11], and
HRIPCB [13]. While these benchmarks enabled progress,
they primarily emphasize trace-level or component-level
anomalies. In contrast, assembly-level defects in mother-
boards (e.g., missing screws, detached fan ports, scratches)
remain underexplored [17, 21], motivating use of the Mira-
cleFactory dataset [21].

Among detection families, two-stage models like Faster
R-CNN [15] have offered strong accuracy but suffer from
slower inference and reduced stability under class im-
balance. In contrast, one-stage models such as the
YOLO family has shown a strong real-time detector per-
formance across vision benchmarks [20]. Recent studies
have shown that YOLOv7 achieves state-of-the-art accu-
racy and throughput across PCB and related manufacturing
tasks: [22] improved YOLOv7 with attention modules for
fine-grained PCB defect detection, [16] applied YOLOv7
to automated remanufacturing defects, and [2] optimized
YOLOv7 for semiconductor wafer inspection. However,
few studies directly compare YOLOv7 and Faster R-CNN
under matched setups for motherboard-level defects.

More recent studies address broader inspection chal-
lenges. [7] proposed an adaptive YOLOv2+Faster R-CNN
ensemble for DIP soldering, highlighting accuracy degrada-
tion under lighting and orientation variations and address-
ing it with continual self-adaptation. [14] further analyzed
how lighting, contamination, and pose shifts impact de-
fect detection models, emphasizing the need for robustness-
oriented evaluation. Ensemble approaches such as voting or
hybrid pipelines have also been explored [6], though practi-
cal deployment remains limited.

Finally, most PCB defect detection studies conclude with
benchmark metrics, without advancing to deployable tools
or operator-facing systems. In contrast, our work provides
both rigorous benchmarking and practical utility: we deliver
the first head-to-head evaluation of YOLOv7 and Faster R-
CNN on an assembly-level motherboard dataset, introduce
a lightweight ensemble (CTV Voter) with interpretable rules
to enhance robustness, and release a GUI-driven inspection
tool. This combination bridges academic evaluation with
factory-floor usability, positioning BoardVision as both a
reproducible research artifact and a practical quality assur-
ance aid.

3. System Overview
BoardVision is designed as a modular, deployment-ready
pipeline for automated motherboard defect detection. The
full system is shown in Fig. 1, which integrates three key
stages: input processing, ensemble inference, and operator-
facing visualization.

Input and Preprocessing. Images or video streams
(either offline files or live camera feeds) are first passed
through a preprocessing stage where YOLOv7 and Faster
R-CNN detectors are initialized. These models then run on
a CPU or GPU to produce bounding boxes and their corre-
sponding confidence scores.

Ensemble Inference. Outputs from the detectors are
reconciled by the Confidence–Temporal Voting (CTV)
module. This layer matches detections across models us-
ing IoU criteria and applies either solo rules (e.g., high-
confidence overrides, model preference) or agreement fu-
sion (confidence- and F1-weighted averaging) before apply-
ing non-max suppression. The details of CTV are described
in Section 4.

Visualization and GUI. The final predictions are over-
laid on the input stream and presented through a PySide6-
based GUI. The system supports two execution modes: (1)
streaming mode, for live video inspection, and (2) file mode,
for batch evaluation of offline images and videos. The in-
terface logs model disagreements, exposes ensemble deci-
sions, and allows operators to adjust key parameters in real
time. Together, these components frame BoardVision as a
practical QA tool, bridging algorithmic advances with user-
facing deployment.

4. Method: Voter Algorithm
While YOLOv7 achieves high overall accuracy and Faster
R-CNN produces more stable detections under class im-
balance, each exhibits complementary failure modes. To
exploit these strengths, we introduce a lightweight ensem-
ble strategy called Confidence-Temporal Voting (CTV).
Fig. 1 includes the CTV workflow. The full pseudocode is
provided in Algorithm 1 in Appendix.

4.1. Parameter Intuition
CTV is governed by a small set of tunable and interpretable
parameters that control pairing, confidence weighting, and
solo-detection rules:
• IoU threshold (tIoU ): minimum overlap required to pair

detections across models.
• Confidence exponent (γ): emphasizes high-confidence

predictions.
• Class F1 margin (f1 margin): tolerance for treating

two models as equivalent on a class.
• Solo confidence thresholds: govern when to retain un-

matched detections - conf thresh, solo strong.
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Figure 1. BoardVision pipeline: YOLOv7 and Faster R-CNN out-
puts are reconciled by the Confidence–Temporal Voting ensemble
and visualized through a GUI for operator-facing deployment.

4.2. Detection Matching

Per-frame detections from YOLOv7 and Faster R-CNN are
represented as bounding boxes with class labels and con-
fidence scores. Let i and j be the indices for the detec-
tions from the YOLOv7 and Faster R-CNN models, respec-
tively. For each YOLO detection yi, we attempt to pair it
with a Faster R-CNN detection fj of the same class if their
intersection-over-union (IoU) exceeds a threshold (tIoU ).
Two cases then follow before the final decision:

• Agreement: If a valid agreement pair (yi, fj) is found,
the detections are merged through a weighted voting
scheme that balances instance confidence with class-level
reliability. A worked example of this fusion process is
provided in Appendix A.

• Solo: If no valid pair is found, we apply a solo-labeling
heuristic that decides whether to retain the detection
based on interpretable rules.

4.2.1. Agreement Cases

Confidence-weighted scoring An exponent γ is applied
to model confidences, amplifying the influence of higher-
confidence predictions during fusion. For an agreement pair

of class c, we assign each model a fusion score:

SYOLO(i) =
(
pYOLO
i

)γ · F1YOLO,c (1)

SFRCNN(j) =
(
pFRCNN
j

)γ · F1FRCNN,c (2)

where pYOLO
i , pFRCNN

j are the model confidence scores
for YOLO and FRCNN detections, and F1·,c is the model’s
validation F1 score for class c.

This formula balances instance-level confidence (per de-
tection) with class-level trustworthiness (per model). A
model that performs better historically on class c exerts
more influence, even if its raw confidence is slightly lower.

Bounding Box for Fused Prediction The final bound-
ing box is a weighted average between SYOLO and SFRCNN,
weighted by bounding boxes from YOLO (bY ) and FRCNN
(bR):

b⋆ =
SY OLO · bY + SFRCNN · bR

SY OLO + SFRCNN
(3)

Finally, the fused confidence is calculated as max(pY , pR).

4.2.2. Solo Cases
When no valid pair is found, CTV applies three inter-
pretable rules to decide whether to keep a detection:

(I) High-confidence override: Retain any detection
with confidence above the solo strong thresh-
old.

(II) Model advantage: Retain if the model’s per-class
F1 score is higher than its competitor and the confi-
dence exceeds conf thresh.

(III) Near-tie fallback: Retain if the two models perform
similarly on a specific class, in terms of their F1-
score (within f1 margin) and the confidence is at
least 0.95.

5. Experimental Setup and Results
5.1. Dataset
We evaluate on the publicly available MiracleFactory
Motherboard Defect Dataset [21], which contains 389
high-resolution images and 2,860 annotated instances
across 11 defect categories. This dataset was designed for
visual quality assurance (QA) in motherboard manufactur-
ing, but it poses several challenges: (1) the number of sam-
ples is modest compared to common detection benchmarks;
(2) class distribution is highly imbalanced, with common
classes such as Screws dominating, while rare but oper-
ationally important categories such as Loose Screws and
CPU fan port detached contain fewer than 100 instances;
and (3) many labels represent fine-grained, visually similar
categories (e.g., different screw conditions), making accu-
rate discrimination difficult under imbalance. Table 1 sum-
marizes the distribution.
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Table 1. Distribution of annotated instances across defect classes.

Class Name Instance Count
Screws 806
CPU FAN Screws 685
CPU FAN NO Screws 326
CPU fan 313
No Screws 196
CPU fan port 159
CPU FAN Screw loose 99
Scratch 95
Incorrect Screws 63
CPU fan port detached 60
Loose Screws 58

5.2. Training and Evaluation Protocols
We compare YOLOv7 and Faster R-CNN under matched
training setups to ensure fairness. Both were trained for
50 epochs with early stopping. Models were trained with
stochastic gradient descent and comparable learning rates,
using input size of 640×640. YOLOv7 followed its official
PyTorch implementation with a base learning rate of 0.01,
while Faster R-CNN used a ResNet-50 FPN backbone via
torchvision with a base learning rate of 0.005. For the CTV
approach, we used tIoU = 0.4, γ = 2, and f1 margin =
0.05, with pYOLO

i = 0.6, pFRCNN
j = 0.9, conf thresh = 0.6

and solo strong = 0.95 as default values.
Inference-time robustness tests uses image augmenta-

tions, including horizontal flipping, increased sharpness,
and varied brightness. To address class imbalance, no re-
sampling was applied, reflecting real world deployment
conditions.

Training was performed on a local workstation (NVIDIA
GTX 1080 GPU with 8GB VRAM, AMD 3900x CPU,
32GB RAM). Models were implemented in PyTorch 2.0
with CUDA 11.7. Checkpoints were saved every epoch,
and the model with the highest validation performance was
selected for final evaluation. This ensured consistent con-
vergence monitoring while enabling reproducibility of re-
sults.

We evaluate all models on a held-out test set of 45 images
(640 × 640), containing 365 annotated instances across all
11 classes. Standard object detection metrics were used to
evaluate model performance [3, 8]:

• mAP@0.5: Mean Average Precision at an Intersection
over Union (IoU) threshold of 0.5, measuring bounding
box localization and classification accuracy.

• mAP@0.5:0.95: A stricter metric averaging mAP across
IoU thresholds from 0.5 to 0.95 (in 0.05 increments), cap-
turing both coarse and fine localization quality.

• Precision (P): Ratio of correctly predicted defect in-
stances to total predictions, reflecting false positive rates.

• Recall (R): Proportion of ground truth instances correctly
identified, reflecting false negative rates.

• F1-score (F1): Harmonic mean of precision & recall.
• FPS (frames/sec): The number of images processed per

second, indicating real-time viability.

5.3. Full Quantitative Results
Table 2 compares YOLOv7, Faster R-CNN (FRCNN), and
the proposed voter ensemble (CTV) across aggregate de-
tection metrics. As expected, YOLOv7 delivers the highest
overall performance, achieving superior mAP@0.5, preci-
sion, and F1-score, while also running over twice as fast
as Faster R-CNN. Faster R-CNN lags across most metrics,
reflecting its sensitivity to small, cluttered objects and the
dataset’s class imbalance. The ensemble improves upon
YOLOv7 by balancing precision and recall, yielding the
highest F1-score (0.964) and top precision (0.967). This
confirms that the voter algorithm enhances stability with-
out sacrificing YOLOv7’s high recall, and provides an inter-
pretable pathway for integrating complementary detectors.

Table 2. Aggregate performance comparison across models.

Metric YOLOv7 FRCNN CTV
mAP@0.5 0.914 0.766 0.921
mAP@0.5:0.95 0.606 0.495 0.604
Precision 0.964 0.953 0.967
Recall 0.956 0.718 0.962
Mean F1-score 0.960 0.819 0.964
FPS (frames/sec) 22–25 8–10 8–10

Table 3 provides a per-class breakdown of F1-scores
across the 11 defect categories. YOLOv7 achieves near-
perfect performance on most of the classes, including fre-
quent categories such as Screws and CPU FAN Screws,
as well as rare but operationally critical types like
Loose Screws. Faster R-CNN, in contrast, collapses on rare
or visually subtle categories (e.g., CPU FAN NO Screws),
reflecting its sensitivity to class imbalance. The voter
ensemble maintains YOLOv7’s strong scores while se-
lectively improving specific categories, most notably
No Screws, where it raises F1 from 0.926 to 0.963 by se-
lectively retaining high-confidence Faster R-CNN detec-
tions. These results confirm that the ensemble preserves
YOLOv7’s dominance while mitigating edge-case failures
that are critical in deployment.

Overall, these results show that ensemble recovers stabil-
ity on difficult classes without hurting throughput. This val-
idates the value of the proposed confidence-temporal voting
scheme for industrial QA.

Failure Modes and Error Analysis. The per-class F1
scores (Table 3) and error profiles (Table 4) highlight
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Table 3. Per-class F1-scores across models.

Class YOLOv7 FRCNN CTV
CPU FAN NO Screws 0.907 0.000 0.907
CPU FAN Screw loose 0.933 0.615 0.933
CPU FAN Screws 1.000 0.959 1.000
CPU fan 0.987 1.000 1.000
CPU fan port 0.974 0.789 0.974
CPU fan port detached 0.667 0.462 0.667
Incorrect Screws 0.857 0.667 0.857
Loose Screws 1.000 0.800 1.000
No Screws 0.926 0.851 0.963
Scratch 0.900 0.900 0.900
Screws 0.987 0.895 0.987

systematic strengths and weaknesses of each detector.
YOLOv7 achieves strong separation on most categories, but
struggles with CPU fan port detached, where only 0.67 of
samples are correctly identified, consistent with its lower
F1 score for this class. Faster R-CNN shows broader dis-
tributed errors, with 103 false negatives overall, reflecting a
strong recall deficit. In contrast, YOLOv7 produces more
false positives (13) despite higher recall.

The proposed voter ensemble inherits YOLOv7’s preci-
sion while reducing Faster R-CNN’s false negatives, achiev-
ing 351 true positives with only 12 false negatives. No-
tably, categories such as No Screws improve from 0.93 F1
with YOLOv7 to 0.96 with the ensemble, and Loose Screws
is preserved at 1.00 compared to 0.67 for Faster R-CNN.
These results confirm that the ensemble provides more bal-
anced error trade-offs, especially for rare but high-cost
classes. These stability gains extend under perturbations,
as further analyzed in Section 6.

Full confusion matrices are included in the appendix for
reference, but the main operational insights are captured by
the compact FP/FN counts and per-class F1 scores.

Table 4. Error profile across models.

Method TP FP FN
YOLOv7 349 13 16
Faster R-CNN 262 13 103
Voter 351 12 14

5.4. Qualitative Examples
In this section we illustrate how each model performs on
real motherboard images. By comparing side-by-side pre-
dictions from YOLOv7 and Faster R-CNN (Figure 3) on the
same test sample, we can better understand practical differ-
ences and failure modes in their behavior.

Both single models identify key components like Screws
and CPU fan, but differences in granularity and class dis-
tinction are evident. In Figure 3a, YOLOv7 outputs precise,
non-overlapping predictions with clear boundaries and min-

Figure 2. Ground truth annotations for the motherboard test image
used in Figures 3 and 4.

imal redundancy. It correctly identifies multiple Screws re-
gions and distinguishes CPU fan components without over-
lap or redundancy. YOLOv7’s predictions are visually co-
herent and class-consistent, reflecting its superior per-class
F1 scores.

Figure 3 highlights typical failure modes. In both cases,
a false positive for No Screws appears in a region where
screws exist, indicating that metallic reflections and shad-
ows near screw holes can trigger confusion. Faster R-CNN
also misses a true CPU FAN NO Screws instance within
the fan mount, suggesting reduced sensitivity to small ab-
sences in dense areas. YOLOv7 incorrectly labels an exist-
ing screw as No Screws in a crowded region.

The voter ensemble consistently corrects these issues.
By fusing detections from both models with agreement-
aware scoring and cross-model suppression, the voter re-
moves spurious No Screws predictions, restores missed
CPU FAN NO Screws near the fan mount, and preserves
confident Screws and CPU fan boxes. Qualitatively, Fig-
ure 4 shows tighter boxes, fewer label flips, and better sep-
aration of visually similar classes.

6. Robustness and Sensitivity Analysis

Beyond baseline performance, we analyze the stability of
BoardVision under both external perturbations (image aug-
mentations) and internal variations (ensemble parameters
and ablation).

Robustness Evaluation. To evaluate robustness, we
tested all models on the original held-out test set and on
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(a) YOLOv7 – FP: Screws

(b) Faster R-CNN – FP: No Screws, FN: CPU FAN NO Screws

Figure 3. Annotated error cases for YOLOv7 and FRCNN. False
positives (FP) and false negatives (FN) are annotated in red to il-
lustrate specific failure modes.

augmented variants designed to simulate real-world pertur-
bations:
• flip: Horizontal mirroring of images to simulate view-

point changes and test invariance to orientation.
• increased sharpness: via Gaussian unsharp masking to

mimic sensor or compression artifacts.
• increased brightness: via linear-RGB exposure adjust-

ment, simulating overexposed, well-lit conditions.
• decreased brightness: using the same method, simulat-

ing underexposed or poorly lit conditions.
Such perturbations are representative of deployment scenar-
ios where camera streams may vary in lighting, sharpness,

Figure 4. Voter Predictions for motherboard test image.

or orientation, particularly in low-cost or factory-floor set-
tings. The voter was run with default parameters, with per-
class weights initialized from preliminary F1 scores of the
base models. Tables 5-7 refer to N = Normal, F = Flip, SUp
= Sharpness Up, BUp = Brightness Up, BDn = Brightness
Down.

Table 5. YOLOv7 Performance under Perturbations.

Metric Mean ± Std N F SUp BUp BDn
P 0.962 ± 0.006 0.964 0.969 0.950 0.964 0.967
R 0.949 ± 0.009 0.956 0.953 0.934 0.951 0.959
F1 0.958 ± 0.007 0.960 0.961 0.942 0.957 0.963
FPS 22–25

Table 6. Faster R-CNN Performance under Perturbations.

Metric Mean ± Std N F SUp BUp BDn
P 0.954 ± 0.008 0.953 0.967 0.945 0.945 0.959
R 0.713 ± 0.003 0.718 0.721 0.710 0.712 0.712
F1 0.816 ± 0.005 0.819 0.826 0.811 0.812 0.818
FPS 8-10

Table 7. CTV Performance under Perturbations.

Metric Mean ± Std N F SUp BUp BDn
P 0.964 ± 0.006 0.967 0.972 0.953 0.961 0.967
R 0.954 ± 0.009 0.962 0.948 0.940 0.956 0.962
F1 0.957 ± 0.006 0.964 0.960 0.946 0.959 0.964
FPS 8-10

Across augmentations shown in Table 5, YOLOv7 main-
tains strong Recall but suffers drops under Sharp Up (F1
= 0.942), exposing some fragility to high-frequency dis-
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tortions. Faster R-CNN degrades more substantially, with
Mean F1 = 0.816. Its heavier reliance on region proposals
makes it sensitive to small feature perturbations, leading to
lower stability across all conditions. The Voter Ensemble
in Table 7 matches YOLOv7’s F1 (0.957 vs. 0.958) while
delivering higher precision and lower variance. Across aug-
mentations, the Voter’s F1 ranges from 0.946 (Sharp Up) to
0.964 (Normal), consistently narrowing YOLOv7’s fluctu-
ations. Even when YOLOv7 dips under augmentation like
in Sharp Up, the Voter stabilizes performance by leverag-
ing cross-model agreement. The voter’s stability across
perturbations demonstrates robustness: even when a sin-
gle model wavers, the ensemble preserves consistent per-
formance, making it more reliable for deployment on noisy
or imperfect inspection streams.

Table 8. Sensitivity of CTV parameters across IoU, γ, and solo
thresholds. Bold values indicate notable deviations.

Voter Params mAP@0.5 mAP@0.5:0.95 P R
tIoU = 0.3 0.921 0.604 0.967 0.962
tIoU = 0.5 0.921 0.604 0.967 0.962
tIoU = 0.7 0.919 ↓ 0.604 0.949 ↓ 0.962
γ = 0 0.917 ↓ 0.605 ↑ 0.964 ↓ 0.959 ↓
γ = 1 0.921 0.605 ↑ 0.967 0.962
γ = 2 0.921 0.604 0.967 0.962
γ = 3 0.921 0.596 ↓ 0.967 0.962
solo=0.90 0.910 ↓ 0.595 ↓ 0.944 ↓ 0.962
solo=0.95 0.912 ↓ 0.597 ↓ 0.956 ↓ 0.962
solo=0.98 0.921 0.604 0.967 0.962

Sensitivity to Voter Parameters. As Table 8 shows, CTV
is stable across a wide range of parameters, but extremes
degrade performance. IoU thresholds of 0.3–0.5 perform
identically, while raising to 0.7 reduces precision (0.949)
and mAP@0.5 (0.919). The exponent γ performs best at
1–2, whereas γ = 0 removes YOLO’s precision bias and
lowers recall (0.959), and γ = 3 suppresses mAP@0.5:0.95
(0.596). Solo thresholds below 0.98 admit too many weak
detections, collapsing precision to 0.944–0.956. The default
(tIoU = 0.5, γ = 2, solo = 0.98) sits near the optimal
balance.

Table 9. Ablation study of Ensemble Components.

Config mAP@0.5 mAP@0.5:0.95 P R
Full Ensemble 0.921 0.604 0.967 0.962
No High confi-
dence

0.910 0.595 0.944 0.962

No Per-class F1
weighting

0.912 0.601 0.956 0.962

Always-tie rule 0.912 0.597 0.956 0.962

Single-Factor Ablation of Ensemble Rules. The abla-
tion study in Table 9 confirms that the full CTV ensem-

ble achieves the strongest balance, with mAP@0.5 of 0.921
and precision/recall both above 0.96. Removing the high-
confidence override notably degrades precision (-2.3%) and
reduces mAP, showing its importance for reducing false
positives and driving measurable precision gains. Eliminat-
ing the per-class F1 weighting or relaxing tie rules causes
only minor drops, indicating they fine-tune performance
but are not as critical as the override. Overall, the study
highlights that the ensemble rules improve robustness by
preserving high-confidence detections and stabilizing recall
without sacrificing precision.

Table 10. IoU and γ sensitivity. Defaults: tIoU=0.4, γ = 2.

tIoU γ mAP@0.5 mAP@0.5:0.95 P R
0.30 0 0.917 ↓ 0.605 0.964 0.959 ↓
0.30 1 0.921 0.605 0.967 0.962
0.50 0 0.917 ↓ 0.605 0.964 0.959 ↓
0.50 1 0.921 0.605 0.967 0.962
0.70 0 0.919 0.606 ↑ 0.949 ↓ 0.962
0.70 3 0.919 0.596 ↓ 0.949 ↓ 0.962

Multi-Factor Stress Tests. Table 10 shows that IoU and γ
interact smoothly near defaults, but extreme values combine
poorly: e.g., tIoU=0.70 with γ = 3 reduces precision to
0.949 ↓ and mAP@0.5:0.95 to 0.596 ↓.

Table 11. Impact of per-class F1 weighting under stress.

tIoU γ f1 margin mAP@0.5 P R
0.30 0 Original 0.917 0.964 0.959
0.30 0 All-ones 0.764 ↓ 0.970 0.718 ↓
0.50 1 Original 0.921 0.967 0.962
0.50 1 All-ones 0.768 ↓ 0.974 0.721 ↓
0.70 3 Original 0.919 0.949 0.962
0.70 3 All-ones 0.767 ↓ 0.970 0.718 ↓

Table 11 reveals the hidden importance of per-class F1
weighting. When replaced with uniform all-ones weights,
recall collapses by 24% ↓ (0.962→ 0.718) and mAP@0.5
drops to 0.76 ↓. This shows that F1 weighting is essential
under class imbalance, ensuring rare but critical defects are
not ignored.

The sensitivity and ablation analyses jointly demon-
strate that CTV’s design is not redundant. The high-
confidence override provides the main precision boost,
while F1 weighting and tie rules act as stabilizers - mod-
est in isolation but essential under stress.

7. BoardVision GUI Application
To bridge benchmarking with deployment, we developed a
lightweight graphical user interface (GUI) for BoardVision
using Python’s PySide6/Qt framework.

With a 3-column synchronized view, the GUI enables
side-by-side inspection of YOLOv7 and Faster R-CNN pre-
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dictions, while transparently displaying the fused ensemble
output in real time. This design operationalizes the perfor-
mance trends described in Section 5.2 and makes model dis-
agreements directly observable to practitioners.

The interface supports flexible input sources (local
files, webcams, network streams) and allows users to ad-
just key ensemble parameters such as conf thresh,
solo strong, and iou thresh. User can also adjust
runtime behavior (stride for frame skipping, pause/resume,
or stop). Real-time logs and overlays expose the Confi-
dence–Temporal Voting rules (Section 4), enabling prac-
titioners to interpret how detections are promoted, sup-
pressed, or fused during operation. The left panel of the
GUI givess access to these controls.

Figure 5. Live inference on a low-light, low-resolution stream.
YOLOv7 misses a CPU fan, Faster R-CNN detects it with high
confidence (p = 0.98), and the voter ensemble fuses the result
into the final decision (yellow box).

8. Discussion and Future Work
Our study surfaced several practical lessons for applied de-
fect detection. First, ensemble design can remain simple yet
effective: interpretable rules such as high-confidence over-
rides and per-class weighting delivered stability without re-
quiring complex meta-models. Second, dataset imbalance
emerged as the primary bottleneck: rare but operationally
critical defects consistently challenged single models, un-
derscoring the need for either targeted data collection or en-
semble mechanisms that preserve rare detections. Third, ro-
bustness analysis showed that stability across perturbations
is as important as raw mAP, since factory conditions rarely
match controlled benchmarks. Finally, deployment through
the GUI demonstrated that transparency is crucial: visualiz-
ing candidate and fused boxes not only improved user trust
but also made failure modes visible in ways that metrics

alone cannot. These insights position BoardVision as a re-
producible blueprint for building interpretable, deployment-
ready vision systems in manufacturing.

Future work will focus on three directions: expanding
dataset coverage to address class imbalance (particularly for
rare but high-cost classes), adapting ensemble rules dynam-
ically to improve generalization under distribution shifts,
and integrating BoardVision more tightly into manufactur-
ing pipelines through headless QA modules, automated re-
porting, and human-in-the-loop inspection.

Ethics and Societal Impact. This work does not involve
personal or sensitive data. Potential risks include over-
reliance on automated inspection, which could miss rare but
critical defects if deployed without human oversight. We
recommend human-in-the-loop verification to ensure safety
and reliability in practical use.

Use of Large Language Models. Parts of the Board-
Vision software were prototyped with assistance from Ope-
nAI’s GPT-5 model. The LLM generated Python scaffold-
ing for the graphical interface and the ensemble evaluation
pipeline. All outputs were reviewed, debugged, and refac-
tored by the authors to ensure correctness. Consistent with
WACV policy, we take full responsibility for the final im-
plementation.

9. Conclusion

This paper introduced BoardVision, an assembly-level
motherboard defect detection system that combines
YOLOv7 and Faster R-CNN through a lightweight, inter-
pretable ensemble. The proposed Confidence–Temporal
Voting (CTV) framework reduced failure modes on rare
but high-cost classes and delivered more stable performance
than either detector alone. Experiments on the MiracleFac-
tory dataset confirmed that the ensemble not only improved
F1 and precision but also maintained robustness under per-
turbations. In live inference, the ensemble consistently out-
performed either single model: running both detectors in
parallel reduced indecisiveness on borderline cases, stabi-
lized frame-to-frame decisions under low light or clutter,
and filtered spurious boxes via cross-verification.

Beyond metrics, a deployment-oriented GUI demon-
strated how the ensemble’s decision rules can be visualized
and tuned in real time, bridging the gap between research
benchmarks and practical motherboard inspection. We will
publicly release the code, models, and the BoardVision soft-
ware to support reproducibility in manufacturing QA and
related applications.
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Algorithm 1: Confidence–Temporal Voting (CTV)
Input: YOLO detections Y , FRCNN detections R

(each as boxes b, label ℓ, confidence p);
IoU threshold tIoU ; confidence exponent γ;
per-class validation scores F1Y OLO,c, F1FRCNN,c;
solo thresholds conf thresh, solo strong; near-tie
margin f1 margin;
flag fuse coords (average coordinates if true)
Output: Final fused detections F
F ← ∅ ;
Form candidate matches between Y and R with

same label and IoU(bY , bR) ≥ tIoU (greedy by
IoU) ;

foreach matched pair (yi, rj) do
SY ← (pY )

γ · F1Y OLO,ℓ,
SR ← (pR)

γ · F1FRCNN,ℓ ;
if fuse coords then

b⋆ ← SY bY + SR bR
SY + SR

;

else
b⋆ ← argmaxb∈{bY ,bR}{SY , SR};

ℓ⋆ ← ℓ, p⋆ ← max(pY , pR) ;
Append (b⋆, ℓ⋆, p⋆) to F ;
Mark yi and rj as used ;

foreach unmatched detection d = (b, ℓ, p) in Y ∪R
do

let m ∈ {YOLO, FRCNN} be the model of d,
and m′ the other model ;

if p ≥ solo strong then
Append d to F ; continue

if F1m,ℓ > F1m′,ℓ and p ≥ conf thresh then
Append d to F ; continue

if |F1YOLO,ℓ − F1FRCNN,ℓ| ≤ f1 margin and
p ≥ 0.95 then

Append d to F ; continue

Apply class-wise Non-Maximum Suppression to F ;
return F ;

Example of Fusion

YOLOv7 predicts [100,100,200,200] with
confidence 0.9, Faster R-CNN predicts
[110,105,195,205] with confidence 0.8. After
weighting with class-level F1 and γ = 1.5,
YOLO’s score is 0.75, FRCNN’s 0.54.
Weighting the coordinates yields:

x⋆
1 =

0.75 · 100 + 0.54 · 110
0.75 + 0.54

≈ 104.2, y⋆1 ≈ 102.0,

and similarly for (x2, y2). So The fused box lies at
[104.2, 102.0, ...], closer to YOLO’s prediction, re-
flecting its higher score, while still adjusting toward
FRCNN’s box.

Figure 6. CTV Fusion Example.
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Figure 7. Normalized confusion matrix for YOLOv7 predictions.

Figure 8. Confusion matrix for Faster R-CNN predictions.
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Figure 9. Confusion matrix for the proposed Voter Ensemble. Misclassifications are sparser, reflecting improved reliability on rare and
ambiguous classes through ensemble fusion.
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Figure 10. BoardVision GUI prior to selecting an input source, shown with synchronized YOLOv7, Faster R-CNN, and voter ensemble
views.
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