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1. Why Detecting Novelty Matters

Cyber-physical systems must detect
not just known threats (like elec-
tricity theft), but also
emerging unknown behaviors
— those that aren’t labeled but
may be disruptive.

Traditional anomaly detection
stops at known risks. But what
happens when the behavior is
unseen, unlabeled, and structurally
di!erent?

Our Goal: Build a detection
pipeline that separates anomaly
from novelty — enabling adaptive
control and real-time triage in
electricity grids.

Known vs. Unknown: Our

model targets critical unknown,

unlabeled behaviors — i.e.,

novelty.

 

Raw Data 
Preprocessing: Scaling, 

Sequencing, SMOTE 

Stage 1: Anomaly Detection 
(XGBoost / LSTM+RF) 

Stage 2a: Passive Novelty 
Detection (LOF on normal data) 

Stage 2b: Active Novelty 
Detection (Predictive Divergence) 

Stage 3: Novelty 
Characterization 
Clustering (reversed 
usage, drops, spikes) 

Stage 4: Severity 
Scoring (Distance/ 
Density/ Error Rate) 

 

Stage 5: Planning & 
Triage (Alert, 
Mitigate, Ignore) 

Overview of the Novelty-aware Smart Grid Pipeline

2. Anomaly Detection in Smart Grids

Dataset Overview
SGCC Smart Grid Dataset (2014–2016)
↭ Users: 1,037
↭ Daily Samples: 42,372
↭ Label: FLAG = 1 for electricity theft (8.6%)

Purpose: Detect known theft cases (FLAG=1) using
supervised learning — to reduce false negatives.

Model 1: XGBoost
↭ Feature-based gradient boosting + SMOTE for class

imbalance + Threshold tuning
Model 2: LSTM + Random Forest (RF)
↭ Input: 30-day consumption sequence
↭ LSTM encodes temporal behavior + RF predicts theft

from LSTM embedding

3. Passive Novelty Detection

Purpose: Detect previously unseen consumption shifts not
captured by labeled training data.

Model: Unsupervised detection using Local Outlier Factor
(LOF)
↭ Trained on PCA-reduced features from FLAG = 0

(normal) users
↭ Injected novel patterns (e.g., spikes, sine) into normal

and anomalous users to evaluate LOF sensitivity
↭ Detects structural outliers via local density

Model Type Accuracy Recall Precision F1 Score AUROC

XGBoost (Anomaly) 80% 66% 39% 49% 81%

LSTM+RF (Anomaly) 91.4% 5% 44% 9% 74%

LOF (Novelty) 69.7% 88.9% 20% 32.7% –

Takeaway:
↭ LSTM+RF achieves high accuracy but fails to detect most

thefts (poor recall).
↭ LOF captures structural novelty with excellent recall —

ideal for exploratory triage.

4. Active Novelty Detection via Predictive
Divergence (ELSTM)

↭ ELSTM = LSTM + MLP model trained on FLAG=0 (normal) users
↭ States: 7-day consumption history with engineered features –

↭ Holiday flag, day-of-week, 3-day rolling avg, change ratio

↭ Predict: [states] → next state (next-day consumption)
↭ Injected novelty patterns simulate plausible unseen consumption

shifts: ramp, spike, reversed, dual peak, sparse burst

Injected patterns used to evaluate both LOF and ELSTM: representative of

real-world novelty types.

↭ Prediction error (on consumption pattern of normal users, anomalies
and novelties) used to quantify behavioral divergence

↭ Novelty patterns consistently caused higher error than FLAG=1 theft
cases

↭ Evaluated MLP and Ridge models (non-temporal baselines); failed to
detect novelty

With ELSTM, novelties show higher divergence than known
anomalies for multiple users.

5. Novelty Characterization & Response

↭ Clustering: Applied KMeans to LOF-flagged novelties projected via
PCA+t-SNE

↭ Structure Discovery: Three distinct clusters reflect varied novel
behavior: burst, reversed, inverted bell

↭ Label-Free Interpretation: Clustering helps separate novelty
types without any supervision

↭ Planning Implication: These groupings can guide mitigation or
investigation actions

↭ Severity Scoring: Each novelty sample is assigned a severity tier
based on structural divergence

↭ Severity tiers:
Top 10% = High , 80–90% = Medium, Below 80% = Low

↭ Threshold-based triage system for aligning with control actions:
High severity → Trigger Mitigation
Medium severity → Flag for manual review
Low severity → Ignore as benign drift

↭ Enables integration with planning/control systems (e.g., energy
routing, alerting)

↭ Severity scoring shows clear structural separation — enabling
actionable triage.

Control Triage & Planning Signal

LOF-flagged novelties grouped by KMeans. LOF struggles to

separate Anomaly and Novelty.

Clear separation of severity tiers in novelty space.

Severity tiers are statistically distinct with minimal overlap.

6. Takeaways & Future Work

Key Insights:
Novelty →= Anomaly

Unlabeled, unseen shifts require di!erent strategies than

known threats.
↭ Predictive error from LSTM + engineered features

flags novelties without labels
↭ LOF + clustering uncover structure and behavioral

causes without supervision

Triage & Planning:
↭ Severity scoring enables mitigation, review, or dismissal of

novel patterns
↭ Detection connects to planning — a step toward adaptive,

control-aware CPS

Next Steps:
↭ Integrate with decision-aware systems (e.g., routing where

actions influence future behavior)
↭ Expand to include feedback and action-driven adaptation
↭ Apply to real-world novelty: concept drift, attacks, and

mass-scale behavior shifts
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