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Abstract—Cyber—physical systems (CPS) such as smart grids
increasingly encounter novel behaviors that differ from labeled
anomalies and may disrupt operations if left unmanaged. We
present a feasibility pipeline for handling such novelties in time-
series consumption data, combining anomaly detection, predictive
residual modeling, and a simple triage illustration. Our goal is to
demonstrate how existing tools can be integrated end-to-end in a
pipeline that highlights challenges and opportunities for novelty-
aware CPS resilience.

We demonstrate the pipeline on residential consumption data
from the State Grid Corporation of China (SGCC), where we
inject CPS-inspired novelty patterns (e.g., drift, spike, surge,
flip, outage) to stress-test detectors. We adapt off-the-shelf
baselines, including density-based methods (e.g., LOF) and a
predictive baseline (ELSTM), showing how they capture different
novelty regimes. Finally, we illustrate how outputs may be
aggregated into a novelty characterization step to highlight
potential operator-facing triage.

Our results suggest that this integration of passive detection,
predictive residuals, and simple scoring can highlight tradeoffs
between novelty regimes and motivate future, deeper studies of
novelty-aware CPS resilience.

Index Terms—novelty detection, anomaly detection, out-of-
distribution detection, cyber—physical systems, smart grid, re-
silience, time series, triage

I. INTRODUCTION

Learning-enabled cyber—physical infrastructure (CPS) in-
creasingly underpins modern electric grids: AMI/IoT end-
points, DERs, and automated SCADA workflows expand
observability and control, but also enlarge the attack surface
and amplify the cost of model mismatch. Traditional anomaly
detection (AD) methods target known, labeled risks such as
electricity theft, often using supervised classifiers [3], [2], [4].
However, these approaches often struggle when faced with
novel behaviors—previously unseen behavior regimes that
break training assumptions. Novelty arises in practice from
faults, new devices, or adversarial campaigns, and misclassi-
fying it as anomaly may trigger brittle decisions and unsafe
grid operations.

The need for novelty-aware detection is underscored by real
incidents. False-data injection attacks (FDIAs) against power-
system state estimation [22] and the 2015 Ukraine blackout
[19], [20] illustrate how attacker-driven novelties can bypass
traditional monitoring [22] and how coordinated, SCADA-
level intrusions can directly manipulate operations. Botnet-
driven oscillations (BlackloT, MaDIoT) [28], [21] demonstrate
how high-wattage IoT loads can create entirely new demand

*This version reflects the author’s final, independently completed imple-
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trajectories. Even gradual drifts, such as HVAC degradation
[13], manifest as ramp-like novelties in load curves. Smart-
grid cyber-physical attacks [12], [14], [15], [17] stress that
unseen load patterns are operationally disruptive, reinforcing
the importance of separating novelty from anomaly.

Beyond explicit attacks, the distribution of consumption
itself drifts: adoption of EVs and heat pumps, extreme-weather
events, and changing demand-response programs can induce
non-stationarity. A large body of work shows that detectors
trained on historical data degrade under concept drift; effective
systems must quantify drift, adapt thresholds, and reassess
confidence over time [23], [24]. In time-series specifically,
forecasting-based residuals are a well-established basis for
anomaly or Out-of-Domain (OOD) scoring, precisely because
they surface model—environment misalignment without requir-
ing new labels [25].

Existing methods remain limited in their functionalities.
Density-based approaches such as LOF [1] can flag outliers
without labels but are essentially passive, lacking temporal
resolution. Reconstruction/likelihood methods [8], [9], autoen-
coders and VAEs [25], [29], [30] still conflate rare anomalies
with unseen novelties. Forecasting-based approaches including
recent advances like the Anomaly Transformer [31], treat
residual error as an OOD signal [11], but few have been
contextualized for CPS resilience. All of these systems aim
for only the detection module, still lacking from generating
actionable insights for planning.

Operators, however, need actionable signals, not just raw
outlier scores. Compliance frameworks (e.g., NERC CIP) em-
phasize auditable processes and proportional response: high-
confidence events should trigger mitigation; low-confidence
deviations warrant monitoring rather than disruptive control
actions. That operational need translates, algorithmically, into:
(i) separating known, labeled risks (e.g., theft) from unknown,
unlabeled behaviors (novelty); (ii) combining passive density
cues with predictive divergence signals to catch both structural
outliers and emerging shifts; and (iii) characterizing novelty
by structure and tiering by severity to support triage and
planning [26].

To illustrate this gap, we assemble a novelty-aware pipeline
for residential electricity consumption data in a smart-grid set-
ting. The pipeline integrates three complementary signals: (1)
supervised anomaly filtering for known theft cases; (2) passive
novelty detection via LOF trained only on normal users; and
(3) predictive novelty via an ELSTM baseline, where residual
error serves as a label-free divergence score. We then cluster
flagged novelties and assign illustrative severity tiers (mitigate,



review, ignore) as a simple triage step.
Contributions. In this work, we make the following con-
tributions.

o We present a preliminary, end-to-end pipeline for novelty
handling in smart grid CPS, combining anomaly detection,
predictive residuals, and a simple triage illustration.

« We adapt representative disruptive patterns as injected nov-
elties to stress-test detectors in residential consumption data.

« We show how a density-based baseline (LOF) and a predic-
tive baseline (ELSTM) capture different aspects of novelty,
and illustrate how a severity scoring step may support
operator-facing triage.

This work aligns with the ARRL workshop themes: Adapt-
able — we illustrate how a predictive baseline (ELSTM
residuals) can expose model-environment misalignments and
respond to previously unseen shifts; Reliable — we demon-
strate that standard density-based methods (e.g., LOF) and
clustering can provide complementary structural signals under
uncertainty; and Responsible — we include a proof-of-concept
severity scoring step to illustrate how novelty flags might be
translated into operator-facing triage that avoids unnecessary
interventions.

II. RELATED WORK

Smart-Grid Anomaly and Non-Technical Loss (NTL) De-
tection: Electricity-theft and consumption anomalies are com-
monly cast as supervised or semi-supervised classification
under heavy class imbalance. Tree ensembles (e.g., XGBoost)
and sequence encoders (LSTM/GRU) achieve strong accuracy
on seen theft behaviors [3], [2], [4], with imbalance remedies
such as SMOTE reducing false negatives. However, these
detectors degrade under distribution shift [23] and attacker
adaptation, limiting robustness in practice [36]. Unsupervised
or weakly-supervised approaches (clustering, autoencoders)
relax label dependence but still conflate rare anomalies with
true novelties [8], [9], [29], [30].

Novelty and OOD detection in time series.: Classical
density and neighborhood methods such as LOF [1] and isola-
tion forests [7] remain standard baselines for novelty detection
without labels. Recent surveys systematize three dominant
families for time-series novelty and anomaly detection: recon-
struction/likelihood methods (autoencoders, VAESs), predictive-
residual methods, and association/attention-based models [29],
[30], [25]. Forecast-based approaches in particular use residual
error as an out-of-distribution signal (e.g., Uber [11]), and
are widely applied in industrial monitoring. Transformer-based
variants such as the Anomaly Transformer [31] extend this
idea by comparing attention associations rather than raw
residuals, but remain label-free and distributional in spirit.

Our work builds on this forecast-residual paradigm [11],
but explicitly illustrates its adaptation to smart-grid CPS with
engineered context features and thresholds, and include a
downstream characterization step.

Cyber-Physical Security in Smart Grids: A growing
body of literature studies cyberattacks and failures in energy
systems. Sun et al. [13] showed that gradual equipment

degradation produces detectable ramps, motivating predictive
monitoring. Rajkumar et al. [14] and Zhang et al. [12] survey
cascading failures and load-altering attacks (LAA), linking
them to systemic risks. Alanazi et al. [15] analyzed load os-
cillation attacks, while Mateu-Barriendos et al. [16] proposed
power oscillation damping controllers for mitigation. Alomari
et al. [17] and Jha [18] classify smart grid threats under the
CIA triad (availability, integrity, confidentiality) and outline
incident response strategies. These works motivate our effort to
link the injected novelties to practical faults and cyberattacks,
grounding novelty detection in real-world operator actions.

From Detection to Characterization and Triage: Most
anomaly and novelty detectors stop at detection, returning raw
scores without operator guidance. For CPS, however, opera-
tors require actionable, auditable signals. Clustering methods
(PCA/t-SNE + k-means) have been widely applied to structure
embeddings for interpretability [5], [6]. Severity scoring and
tiered thresholds have been proposed in statistical quality
control (EWMA, CUSUM, POT) [33], [32], [34] to turn score
into decisions, but are rarely integrated with novelty detection
pipelines. Our approach shows how clustering of novelty
candidates with a severity scoring method that fuses predictive
divergence and structural distance, suggests operator-friendly
triage signals. This bridges ML-based detection with plan-
ning/control frameworks such as CityLearn [27], [35], where
decision-aware adaptation is essential.

ITII. METHODOLOGY
A. Pipeline Overview

We structure the study around a multi-stage pipeline that
integrates standard components for anomaly filtering, novelty
injection, detection, and post-processing. The purpose is to
demonstrate how such elements can be combined end-to-end,
rather than to propose new algorithms at each stage. The
pipeline proceeds as follows:

1) Supervised anomaly filtering: known labeled anomalies
are removed using standard classifiers to approximate
realistic operating conditions where obvious risks have
already been screened.

2) Passive novelty detection: after CPS-inspired novelty
patterns are injected as controlled stress tests, density-
based methods such as LOF are applied to identify
structural deviations without temporal modeling.

3) Predictive novelty detection and thresholding: in the
same controlled setting, an ELSTM baseline is trained on
normal behavior and absolute residual errors are used to
illustrate how forecasting divergence can signal novelty.
Statistical rules EWMA-based adaptive thresholds (per-
user) and global percentiles (cold-start) - convert contin-
uous scores into novelty flags.

4) Characterization and triage: flagged novelties are clus-
tered into coarse families and assigned illustrative severity
scores to make outputs more interpretable for operators.

This overview emphasizes the feasibility of integrating
diverse techniques into a single workflow. The staged design



Stage 1: Anomaly Filtering
(XGBoost / LSTM+RF)

Preprocessing: Scaling,
Sequencing, SMOTE

Raw Data

Stage 2a: Passive Baseline (LOF
on normal users)

Stage 2b: Predictive Baseline
(ELSTM residual errors)

Stage 3: Novelty
Characterization

Stage 4: Severity
Scoring (Distance/
Density/ Error Rate)

Stage 5: Triage (Alert,
Mitigate, Ignore)

(clustering on error
properties)

Fig. 1: End-to-end novelty-aware smart grid pipeline.

aims to (i) screen known, labeled threats, (ii) surface previ-
ously unseen behaviors (e.g., regime shifts from EV adoption
or persistent equipment faults), and (iii) provide interpretable
signals that can support operator action. It aligns with ARRL
goals of adaptability (the ELSTM residual baseline highlights
shifts), reliability (LOF and clustering offer complementary
structural cues), and responsibility (the severity-scoring illus-
tration encourages proportional responses).

B. Stage 1 — Supervised Anomaly Filtering

Before testing novelty detection, we apply a standard super-
vised anomaly filter to remove known labeled risks (FLAG=1)
from the training pool. This ensures novelty detectors operate
on realistic conditions where labeled anomalies are already
screened. We treat this step purely as preprocessing, using the
anomaly labels provided in the SGCC dataset.

We frame this as a supervised classification task and imple-
ment:

« XGBoost: a gradient boosting classifier applied to aggre-
gated features of daily consumption. Gradient boosting is
widely used in smart grid intrusion and fraud detection
because of its robustness to heterogeneous features and class
imbalance.

This module could be used as a pre-processor for the later
novelty-aware components.

C. Novelty Injection Design

Novelty vs. anomaly: In this work, we formally separate
novelty from anomaly. We define novelty as the sudden
emergence of a short-lived behavior with no repetition (or
extremely rare) across the observation period. Anomalies, in
contrast, represent known, recurrent deviations (e.g., electricity
theft) that exist in the labeled training distribution.

However, evaluating detection performance on a single
instance is not reproducible. To bridge this gap, we define
families of synthetic novelties which approximate categories
of unseen behavior, and individual instances are injected once
per trace. This preserves the “unseen” character of novelty
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Fig. 2: Injected novelty families (drift, spike, surge, flip,
oscillation, outage).

while allowing systematic and repeatable evaluation across the
dataset.

To demonstrate feasibility of detectors in our pipeline, we
focus on following representative injected patterns:

o Drift: A slow upward or downward slide in the base-
line load, mimicing long-horizon sensor drift or gradual
efficiency loss in equipment; corresponds to permanent
mean/slope changes [37].

o Spike: A sudden, isolated jump in demand embedded
within otherwise stable traces, representing transient de-
vice faults or single-event anomalies.

« Surge: A sequence punctuated by irregular bursts, mod-
eling erratic load injections that resemble misconfigured
timers or sporadic demand spikes; captured via step-like
and slope-like trends [39].

o Flip: Segments whose temporal order is distorted or
reversed, designed to emulate replay or spoofing attacks
that insert misleading historical values; sign-flip is a
standard augmentation primitive [39].

« Oscillation: Repetitive swings of varying frequency and
amplitude, echoing unstable control loops or cyclic de-
mand patterns that stress grid balancing; matches sea-
sonal/periodic behavior [37].

« Outage: Intervals where normal activity is abruptly sup-
pressed or silenced, reflecting partial blackouts, rolling
brownouts, or load-shedding scenarios.

Each injected pattern is parameterized by duration, ampli-
tude, and starting day, with values sampled from reasonable
ranges to generate varied instances. These are not intended as
a comprehensive taxonomy; rather, they serve as illustrative
stress-tests that allow us to observe how passive density-based
detectors and predictive residuals respond under controlled
novelty regimes. Our preliminary work introduced novelty
with different injected patterns at the user consumption level.
Although that behavior was referred to as “novelty,” it more
closely aligned with the anomaly class, since those consump-
tion patterns were fully divergent from normal consumption
data. A fuller classification of novelty types across datasets is
left for future work.



D. Stage 2a — Passive Novelty Detection (LOF)

Once novelty patterns are injected, the next step is to
evaluate whether unsupervised detectors can flag them without
access to labels. We adopt the Local Outlier Factor (LOF) [1],
a widely used density-based anomaly detector, as a baseline for
passive novelty detection. LOF measures the relative density
of each data point compared to its neighbors in feature
space, assigning higher scores to points that lie in sparse
regions. Unlike supervised classifiers, LOF does not require
anomaly labels and thus reflects a realistic setting for detecting
unknown behaviors.

In our pipeline, LOF is applied as-is after a PCA projection
of daily consumption sequences (used only to stabilize dis-
tances). It is trained on users marked as normal (FLAG=0) and
then evaluated on both held-out normal and novelty-injected
users. We report LOF scores as a passive reference, where high
scores indicate structural deviations from the normal training
distribution.

As expected, LOF highlights novelties with sharp structural
deviations (e.g., reversals or sparse bursts), but its lack of
temporal modeling makes it fundamentally passive: it can
identify unusual windows but cannot align novelties in time. In
the pipeline, this serves to illustrate the limitations of passive
density methods, motivating the use of predictive residuals in
Stage 2b.

E. Stage 2b — Predictive Baseline (ELSTM Residuals)

To complement passive density methods, we illustrate the
use of a predictive residual model as a baseline for novelty
detection. The idea is straightforward: if a model trained only
on normal behavior fails to forecast future consumption, its
errors can serve as a signal of novelty.

We adapt a stacked LSTM architecture with sequence-to-
one prediction. Input windows consist of 7 consecutive days
of features (daily consumption values plus calendar/temporal
indicators), and the target is the next day’s load. The network
includes a single LSTM layer, followed by a dense projection
layer and a regression output node. Training is performed only
on users labeled as normal (FLAG=0), using mean squared
error (MSE) loss.
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At inference, we compute the absolute prediction residual
for each day:

€ = \Z/t —@t|

Thresholds are derived from residuals on held-out normal
users, without using novelty labels, ensuring the procedure
remains unsupervised. Larger residuals indicate stronger devi-
ation from the training distribution. To convert residuals into
novelty flags, we apply two simple thresholding strategies:

1) EWMA-based adaptive threshold (per-user): Expo-
nentially Weighted Moving Average (EWMA) adapts

threshold 6; online while assigning higher weight to
recent values, following:

pe = aer + (1 — a)pe—y (D
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O = ps + L - oy 3)

2) Global percentile threshold (cold-start): a global
pooled threshold is applied for assigning novelty flag
when user-specific history is insufficient.

Ba10ba = Percentilegs ({e4 }irain)

These thresholds illustrate how predictive errors can be
turned into novelty flags. In practice, the ELSTM residual
baseline is sensitive to regime shifts (global novelties) that
persist over multiple days, but less effective at capturing short,
sharp deviations (localized novelties).

Within the pipeline, this stage serves as an illustration of
predictive modeling for novelty scoring. More advanced
novelty-aware predictive approaches remain a subject for fu-
ture work.

Predictive divergence examples are shown in Fig. 4, aver-
aged over users for a representative novelty (ramp). Per-user
sweeps across all injected patterns are shown in Fig. 3a, while
aggregated divergence across novelty families remains above
known anomalies (Fig. 5).

F. Novelty Characterization and Triage

Detection alone is not sufficient for operators, who require
signals that can be interpreted and acted upon. To illustrate
how novelty flags might be made more actionable, we include
a simple characterization and scoring step within the pipeline.

First, windows flagged as novel are embedded into a two-
dimensional space using PCA for stability followed by t-SNE
for visualization. K-Means clustering is then applied to group
samples into coarse structural families. This unsupervised
grouping is not intended as a definitive taxonomy, but rather
as an example of how structure can be surfaced from detector
outputs.

In parallel, each flagged window is assigned a severity
score that combines predictive residual magnitude with cluster
centroid distance:

s = OéZ(d) + (1 - 0¢) Z(diStcluster)7 ac [07 1]7 4)

where z(.) denotes standardized values, d is the predictive
error, and dist ;yster 1S the Euclidean distance to the assigned
cluster center.

Severity scores are then mapped into illustrative tiers: High,
Medium, and Low. These tiers are presented as one possible
way of aligning novelty outputs with operator-facing responses
such as mitigation, manual review, or dismissal as benign drift.

This stage is included as a proof-of-concept illustration. It
highlights how raw novelty scores may be transformed into
interpretable triage signals. More systematic severity design
and validation across real operational contexts is left for future
work.



IV. EXPERIMENTAL SETTING AND RESULTS

Dataset. We use the SGCC smart-grid dataset (2014-2016)
with 1,037 users and 42,372 daily records. Each user has
a consumption time series; a binary flag FLAG=1 marks
electricity theft. Normal data have FLAG=0. For novelty, we
train on FLAG=0 users and evaluate on both normal and
novelty-injected windows from these users. For efficiency,
windows are partitioned per user to prevent overlap across
training and evaluation.

Metrics. For anomaly baselines: Accuracy, Recall, Preci-
sion, F1, AUROC. For novelty: detection rate above threshold,
and divergence margins vs. known anomalies. For charac-
terization: cluster purity w.r.t. injected labels and severity
separation.

Injected novelties. We generate six novelty families:
DRIFT, SPIKE, SURGE, FLIP, OSCILLATION, OUTAGE. In-
jection length and amplitude are randomized within realistic
bounds; alignment to daytime hours preserves plausibility.

For stage 1, class imbalance was addressed using SMOTE-
based resampling, and daily records with missing values were
discarded. These preprocessing steps are applied only within
the anomaly filtering module and do not affect subsequent
novelty detection stages. We summarize the settings of our
local/consumption novelty detection experiments below:

« Sliding Window: 7-day window length (W = 7).

o Per-day Features: 5 features per day: consumption, holiday
flag, day-of-week (scaled), 3-day rolling mean, and day-to-
day change ratio.

o Model: LSTM(64) + Dense(64, relu) + Dense(1). Optimizer
Adam, loss MSE. Early stopping with patience=3. Input
shape: (7,5).

o Training Data: Normal users only (FLAG=0). Max 30
windows per user. Saved as numpy arrays for efficiency.

« Novelty Injection: Injected into 5 random normal users,
30-day segment starting at day 100.

o Thresholds: Global pooled baselines from normal users.
Threshold include: 95th percentile, mean+k-std, and EWMA
(per-user). For local novelty detection, per-user IQR and
95th percentile were most effective, while EMWA provided
adaptive and tail-sensitive alternatives.

« Baseline Error: Normal baseline prediction error distribu-
tion computed across all non-injected normal users.

A. Anomaly Detection Baselines

We first establish supervised anomaly detection baselines on
SGCC theft labels (FLAG=1). Table I and II summarize results
for XGBoost. XGBoost achieves moderate performance with
recall of 42% but with low precision. On the SGCC test set,
our xgboost model achieved an overall ROC-AUC of 0.80.
These results shows XGBoost is a viable anomaly identifier,
but is not the best for preprocessing anomaly.

B. Passive Novelty via LOF

To go beyond labeled anomalies, we evaluate Local Outlier
Factor (LOF) as an unsupervised passive novelty detector.
LOF is trained only on normal users (FLAG=0) and then

TABLE I: Performance of XGBoost on Anomaly (Theft) class
at decision threshold of 0.5.

Model
XGBoost (Theft)

Recall
0.42

Precision F1

0.36 0.39

TABLE II: Class independent performance on SGCC at deci-
sion threshold of 0.5.

Model
XGBoost

Weighted Acc.
0.89

Macro F1
0.66

AUROC
0.80

Macro Acc

0.65

exposed to the novelty injections. As shown in Table III, LOF
achieves low recall (21%) but low precision (35%), reflecting
somewhat sensitivity to structural shifts but a tendency to
over-flag. This makes LOF valuable for exploratory triage, but
insufficient for precise or predictive detection.

Importantly, LOF remains a passive detector: it can identify
whether a sequence looks unusual, but it does not perform
windowed prediction or provide time-localized divergence
scores. Thus, while useful for localized density anomalies,
LOF cannot anticipate or quantify novelty in an active, pre-
dictive sense. This motivates our transition to sequence-based
predictive divergence (ELSTM) for active novelty modeling.

C. Novelty Detection with Predictive Baseline

To further analyze how predictive divergence manifests
under different novelty types and user behaviors, we structure
the ELSTM results into three complementary lenses. First, we
illustrate representative case studies (per-user and cross-user)
to show how injected novelties emerge in time-aligned
error trajectories. Second, we examine threshold robustness,
contrasting global cutoffs with adaptive per-user thresholds.
Finally, illustrate how predictive residuals behave across
novelty families, highlighting feasibility of separating long
vs. short novelties. Together, these analyses ground the
predictive divergence signal both in visual case studies and
in quantitative detection behavior.

1) Case Study: Per-User and Cross-User Novelty Profiles:
To better understand how predictive divergence manifests
across different novelty types and users, we analyze two
complementary views.

Per-user, all novelties. Figures 3a and 3b show two rep-
resentative users (1309 and 51) with five novelty families
injected. Within a single user baseline, each novelty produces
a distinct error trajectory: ramps yield gradual elevation, bells
produce sharp symmetric peaks, bursts generate jagged high
spikes, reversals create sustained shifts, and sines induce oscil-
latory divergence. The mean error (black line) smooths across
these but still rises above baseline during novelty intervals.
Adaptive per-user thresholds (IQR, 95th percentile) scale to
each user’s variability and detect all novelties; in contrast,
a static global mean+std cutoff (=24.2) fails to flag subtle
novelties (ramps, reversals). This demonstrates the necessity
of per-user thresholding in heterogeneous populations.



TABLE III: Novelty detection performance of LOF.

Metric Mean + Std
Recall 0.205 + 0.295
Precision  0.352 + 0.427
F1 0.239 + 0.323
AUROC 0.749 £ 0.190
User 1309 - All Novelty Patterns
B N
o & X

(a) User 1309: all novelty families

User 51 - All Novelty Patterns

(b) User 51: all novelty families

Fig. 3: Per-user case studies (Users 1309, 51) under five
novelty families; adaptive thresholds outperform static global
cutoffs.

Per-novelty, all users. Complementary results are shown
in Figure 4, which plots average time-aligned error across
five users for each novelty family. Here, every novelty type
elicits spikes consistently above user baselines, while anomaly
traces remain much lower. The error signatures differ across
novelty families—ramps show smooth rise, bursts/sines show
oscillations, reversals sustain elevated error—providing struc-
tural cues that enable characterization. This cross-user view
confirms that ELSTM divergence generalizes across the pop-
ulation, not just individual cases.

Together, these case studies reinforce two points: (i)
novelty types are structurally separable within a single user’s
trajectory, and (ii) they remain consistently detectable across
multiple users when using adaptive per-user thresholds. This
indicates that ELSTM residuals can yield discriminative,
interpretable novelty signals in this dataset.

2) Error as a metric: Before analyzing thresholds under
novelty, we verify that normal users remain well below detec-
tion cutoffs. Figure 3 shows that pooled normal errors almost
never exceed per-user IQR or 95th percentile lines, ensuring
low false positives.

To complement time-aligned views, Figure 5 plots sorted
absolute prediction errors for each novelty family compared
to true anomalies. Novelties are consistently shifted upward

Average Time-Aligned Prediction Error: Novelty Types vs Anomaly

Absolute prediction Error
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Fig. 4: Cross-user predictive divergence: novelties yield higher,

structurally distinct errors than anomalies. Anomaly baseline
shown in gray.

Aggregated Prediction Errors for Novelty Patterns vs True Anomaly

2.001 — Novelty 1

Novelty 2
—— Novelty 3

7 — Novelty 4

—— Novelty 5

1.50 4 — Novelty 6

——- True Anomaly

Absolute Prediction Error
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Sorted Error Index
Fig. 5: Sorted prediction errors: novelties consistently exceed
anomaly baseline.

across the distribution, confirming separation beyond isolated
spikes. In particular, Novelty 4 shows the strongest divergence,
while Novelties 1 and 3 are closer to anomalies but still remain
above the anomaly baseline. This distributional evidence rein-
forces that ELSTM errors encode structural novelty as a global
shift, not just transient excursions. These results provide the
specificity required to trust ELSTM divergence as a novelty
signal.

Finally, we contrast novelty duration. Structured, long
novelties (ramps, reversals, sines) consistently exceed
thresholds across users, while short or sparse novelties
(isolated bursts) often evade detection unless adaptive
thresholds (IQR/EWMA) are used. This highlights the trade-
off: structured drift is easy to catch, but sparse anomalies
blend into natural variability.

3) Threshold Comparisons: We evaluated multiple thresh-
olding strategies. Global pooled thresholds (mean-+std) pro-
vided a static baseline, effective for cold start. Per-user thresh-
olds (IQR and 95th percentile) adapted better to local dy-
namics, sharply increasing sensitivity to short-lived novelties.
Figure 3 shows that the global cutoffs are not adaptable enough
for individual consumption patterns of each user. Hence, we
tried adaptive per-user thresholds with EWMA thresholds,



Window-level Novelty Clusters (K=6)
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Fig. 6: t-SNE of LOF-flagged windows clustered via KMeans.
Two distinct novelty families emerge in cluster 1 and cluster
5, though LOF alone struggles to perfectly separate anomalies
from novelties.

which adapted to gradual drifts in real time.

D. Characterization and Severity Results

Clustering analysis revealed that LOF-flagged novelties
consistently separate into few distinct interpretable groups.
These structural families align with respective novelty families
and provide interpretable signals beyond binary novelty flags.

Severity scoring, as shown in Figures 7 and 8, produced
a clear stratification across tiers. Although Figure 7 shows
some overlap of points across tiers, this is expected since
novelty severity is shaped not only by distance but also
by underlying behavioral properties. The boxplot analysis in
Figure 8 confirms that these tiers are statistically distinct
with minimal overlap. As a feasibility test, we instantiated
Eq. 4 with @« = 0, i.e., using only the cluster distance
from the centroid among LOF-flagged novelties. Based on a
percentile-based heuristic, novelties above the 85th percentile
were categorized as high risk, warranting immediate operator
intervention; those between the 75th and 85th percentiles as
medium risk, requiring operator review and flagging; and the
remainder as low risk, which can be safely ignored to reduce
alarm fatigue.

Importantly, Figure 6 highlights that LOF alone struggles
to perfectly separate anomaly (theft) and novelty windows,
reinforcing the need for active predictive divergence (ELSTM).
Novelty characterization illustrates how distinct structures may
be surfaced, and how simple severity tiers could support
operator triage in principle.

V. DISCUSSION

Our findings highlight several implications for novelty-
aware CPS monitoring. First, predictive divergence with EL-
STM consistently separates injected novelties from known
anomalies, suggesting that residual-based scores can serve as
reliable, label-free signals in heterogeneous user populations.
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novelties emerge in the subspace.
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Fig. 8: Severity tiers vs. centroid distance. High, medium,
and low tiers form statistically distinct groups with minimal
overlap.

Second, the complementarity between LOF and ELSTM is
noteworthy: while LOF achieves high recall on structural de-
viations without labels, ELSTM provides temporal resolution
and reveals when novelty episodes emerge and persist. Third,
The injected novelty families (ramps, reversals, oscillations,
bursts) illustrate how structural patterns can be made inter-
pretable and mapped into operator-facing signals. Finally, the
contrast between long, structured novelties (readily detected)
and short, sparse ones (often missed) underscores a key open
challenge for future CPS monitoring systems.

Besides the ELSTM baseline, we conducted preliminary
tests with Ridge regression, non-sequence LSTM, and global
novelty injections. These baselines underperformed, with lim-
ited novelty detection capacity, hence we do not include them
in full results.

A. Mapping to ARRL Themes

The staged pipeline can be interpreted in light of the ARRL
workshop themes.



Adaptable. The ELSTM residual baseline highlights when
model-environment misalignments occur without labels, indi-
cating sensitivity to previously unseen shifts such as ramps
or reversals. Results on both localized and global injections
confirm that per-user adaptive thresholds (IQR, EWMA) can
adjust online after a cold-start, offering pathways toward
human-in-the-loop or feedback-driven adaptation.

Reliable. LOF complements ELSTM by robustly detecting
localized novelties. Robust thresholds (per-user EWMA) and
density cues reduce brittleness to heavy tails and user hetero-
geneity.

Responsible. Severity scoring tiers the introduced novelty
families into actionable operator responses, aligning with oper-
ator protocols (e.g., NERC CIP) and avoiding unnecessary in-
terventions, such as: maintenance calls for gradual ramps [13],
inspections for HVAC malfunctions [14], or incident response
protocols under the CIA triad for cyber attacks [17], [12]. This
strengthens the alignment with responsible, trustworthy CPS
design. We also emphasize transparency: severity scores are
auditable; novelty families are interpretable.

B. Limitations and Future Work.

Our evaluation is scoped to the SGCC dataset with synthetic
novelty injections, which, while CPS-grounded, cannot fully
represent the diversity of real faults and attacks. Short, sparse
novelties also remain harder to capture reliably than structured,
long-duration shifts.

Going forward, we plan to broaden evaluation across
multiple datasets and novelty families, report quantitative
benchmarks (recall, FPR, divergence margins) beyond the
case studies, and explore other adaptive thresholding meth-
ods (CUSUM, POT) for online deployment. An important
direction is linking ELSTM outputs with severity scoring and
control actions, enabling utility-facing demonstrations in live
operational settings.

VI. CONCLUSION

We presented a feasibility pipeline for novelty-aware moni-
toring in cyber—physical systems, demonstrated on the SGCC
smart-grid dataset. The pipeline integrates supervised anomaly
filtering, CPS-inspired novelty injection, passive and predictive
detection baselines, simple thresholding, and an illustrative
triage step.

Our findings highlight how residual-based models can sur-
face distributional shifts, how density-based methods capture
structural deviations, and how simple severity scoring can sug-
gest operator-facing responses. Together, these stages illustrate
one possible pathway for integrating existing tools toward
novelty-aware CPS resilience.

Future directions include testing across multiple datasets, re-
fining severity design, and developing advanced predictive and
structural detectors. By framing novelty handling as a staged
pipeline, we aim to open avenues for systematic investigation
of resilience in smart grids and other critical CPS domains.
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