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Abstract—Although Artificial intelligence (AI) systems have
been widely deployed in many applications, they still face
difficulties in quantitatively specifying how distinct datasets or
environments differ, i.e., if one environment is faster (or more
complex) at learning than another. As the frequency of rare
or unexpected events increases in open-world, understanding
the inherent characteristics of the task domain is essential
to model the domain effectively and is needed for accurate
prediction. This work proposes a framework for measuring an
application-independent complexity metric for the AI systems
corresponding to the perception domain. The target environ-
ment space is characterized by distributed datasets where the
overall complexity cannot be computed by existing approaches
dealing with singular local datasets. We propose a complexity
measure for distributed AI environments using inherent dataset
properties such as dimensionality, heterogeneity, and sparsity.
We use federated learning as the reference paradigm to handle
distributed dataset operations since federated learning has been
widely used in edge AI due to data privacy concerns. We propose
a hierarchical architecture to model the federated training phase.
We define the relationships between intrinsic properties and the
environment features in a distributed setting with the proposed
metric. We conduct experiments on three variants of the MNIST
dataset with increasing complexity and measure the domain
complexities independent of any classifiers. Empirical evaluations
show the correlation of (R2 =) 0.85 of the proposed metric with
the reference federated model. The evaluation results imply that
effectively choosing a distributed learning model (or distributed
dataset) can fasten federated learning.

Impact Statement—Training an AI system in a closed world
(or lab environment) is different than training in an open world
since multiple unexpected environmental factors, such as rare or
unusual events, can occur more frequently in the open world.
However, the problem intensifies if the training occurs in a dis-
tributed manner (i.e., federated learning) since the training data
(or environment) remains distributed without central supervision.
Hence, quantifying the complexity (or quality) of training data or
environment is essential since it can assist the training phase by
appropriately choosing a distributed training policy. To address
the issue, we propose a complexity measurement technique for
distributed AI environments, which shows a correlation of (R2 =)
0.81 and 0.85 with the maximum and average distributed (or
federated) accuracy. This metric can measure the complexity of
multiple federated training paths beforehand, thus enabling the
choosing of the low complex path for the training if required.

Index Terms—Open-world AI, Domain complexity, Federated
learning complexity, Edge-centric AI, Distributed AI, Perception
Domain

I. INTRODUCTION

While a wide amount of research and progress has been
made on Artificial Intelligence (AI) agents, there is still a
lot to be done to make such intelligent agents capable of

effectively dealing with the uncertainties in the Open world
[1], [2]. The inherent relationship between the agent and its
perceived environment is crucial in designing an adaptable
agent. To some extent, this issue has recently been addressed in
[3], prompting a full complexity investigation of the perception
domain. AI agents in simulated environments encounter much
fewer possible states and accomplish reasoning on smaller sets
of possible state-action sets than they would face in the natural
environment. As stated in [3], it is essential to understand the
complexity level of a domain as it helps characterizing and
defining uncertainties in that domain, and this is a crucial
prerequisite for a robust transition from restricted domain
to the open world. We need to understand the impact of
domain complexity on algorithm choice to avoid building
suboptimal decision-making systems, which could have fatal
consequences in critical applications such as self-driving cars
[4].

Our objective in this work is to compare the unconditioned
distribution of data between any two datasets and, in turn,
use that to compare different training settings for distributed
learning. In distributed learning, the training phase can choose
one of the multiple possible learning paths, which provides
an advantage but complicates the learning process. Our inter-
est is in analyzing the comparative complexity of different
distributed settings based on the data complexity and the
training environment variables. We want to analyze whether
this aspect of complexity impacts the learning ability of a
distributed system. We have used concepts from information
theory, statistics, collaborative learning, and open-world AI
to capture the essence of domain complexity without the
classifier information.

In this work, we focus on the benchmark datasets widely
used in training various computer vision tasks, where finding
the appropriate class label of images in a relatively sparse
dataset is of high interest. This can easily be extended to
autonomous driving datasets, where image semantic segmenta-
tion is more important. Towards the former problem, a number
of variants have been released with increasing complexity. A
good classification performance on image datasets informs the
feasibility of building perception algorithms, distinguishing
novel elements in perceived environments, and characterizing
different groups of features in the environment. Therefore, by
analyzing the inherent complexity in these types of datasets,
we can realize how hard it is to learn from a dataset compared
to others and hence provides insights into building generaliz-
able agents for the problem of perception in open-world.

While there have been some efforts to evaluate the com-
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plexity of various datasets from the agent perspective [5]–[7],
we need ways to assess the intrinsic features of individual
datasets toward a full complexity realization since this will
render AI systems much more efficient. Intrinsic complexity
metrics refer to complexities that arise from the data distri-
bution, environment, or properties of the data. Approaches
proposed in recent years [7]–[11] focused on local datasets
used by single agents. To complement these research efforts,
environments relying on distributed datasets (used by multiple
agents) must be addressed, as their complexity computation
is not straightforward. In this paper, we show that in such a
distributed environment, it is also necessary to consider the
entities in the environment.

We use federated learning (FL) [12] for training on a
distributed dataset. The main reason for using federated
learning is its rising popularity as a robust architecture for
securely, distributed, and efficiently training AI systems. In
other words, we are addressing what is emerging in the open
world today regarding dataset structure for training modern AI
systems. Our final objective is to build, test, and demonstrate
complexity metrics for the data distribution in large volume,
high dimensional image datasets in singular and distributed
environment settings.

In practice, different entities of federated learning [13]
environment engage in the training phase depending on its
availability. At each communication round, the federated
server can choose which entity to incorporate in training while
leaving others. Hence, depending on the federated entity or
client’s availability and the server’s choice, the training path of
an identical federated task can be different. However, different
learning paths of federated training may not be equally difficult
or achieve similar generalizations. Therefore, the federated
server needs to realize the complexity of a learning path before
training. To address the issue, we propose a domain complexity
metric for measuring the difficulty of each federated learning
path and, thus, the complexity of the overall federated learning
task.

Our proposed approach to measure the domain complexity
is dataset-independent. First, we proposed different metrics
for the complexity measurements separated into three
inherent aspects of the domain: dimensionality, sparsity, and
heterogeneity. Then, we proposed an effective complexity
metric in distributed settings using the intrinsic complexity of
a dataset and the properties of the distributed environment.
We formulate the distributed complexity function as an
augmentation of the L2 norm of intrinsic properties in
the domain space and inverse of the entity number in the
distributed environment. The FL learning in place relies on a
shallow CNN [14] to perform its training, which renders the
approach mostly agent-independent. During the computation
of the proposed complexity metric, intrinsic properties of the
dataset are used from the first step as a part of the augmented
complexity in the distributed paradigm. Specifically, we are
interested in establishing a procedure for perception domain
complexity evaluations in singular and distributed settings
since this is an essential open issue to address in AI systems
development.

Following are the main contributions of our work:
• We propose an application-independent framework for

the intrinsic domain complexity measurements of the
perception domain, where we considered upper and lower
bounds for dimensionality and linear vs non-linear meth-
ods for sparsity and heterogeneity.

• We propose a complexity measurement metric for dis-
tributed federated environment in perception domain
while combining the intrinsic components and distributed
environment features of federated learning. We also pro-
pose a hierarchical architecture for modeling the available
federated training paths.

• We conducted extensive experiments on MNIST, Fashion-
MNIST, and EMNIST-digits in distinct distributed set-
tings and performed ablation study to measure the impact
of each components of our proposed metric on the
distributed domain complexity.

II. RELATED WORKS

Domain complexity has been evaluated in various contexts.
The AI field typically involves an environment from which
we need to get information about how organized the data are
in such a structure. The effort to get effective information
impacts agents’ adaptability to assigned tasks in the open-
world environment. There has been a myriad of work for
defining, detecting, measuring novelty in AI-based open-world
systems [7], [10], [11], [15]–[22]. Most of these approaches
deal with open-world novelties as something abnormal that
the intelligent system must manage. A lot of work on the
open world has been devoted to game applications, where the
environment space is limited. Still, even so, such a strategy is
interesting as it permits playing with a diverse range of po-
tentially adaptable solutions in a controlled environment [15],
[20], [23]–[27]. There are also other directions focused on
information theory, algorithmic information theory, uncertainty
to measure dataset complexity [24], [28]–[36]. These works
typically aim at singular or single agents’ perspectives in the
open world.

A formalization for defining open-world uncertainties to
unify novelty concepts was proposed in [19] by a framework
that provides functions to evaluate if a given input is novel.
Using the proposed framework, they formally define multiple
types of novelty an agent can encounter. The formalism relies
on dissimilarity and regret measures and considers novelty in
the world, observed space, and agent space. That work was
expanded in [10], which introduced enhanced dissimilarity
measures by using extreme value theory, allowing for multiple
sub-types of novelty, and this was performed in the agent
space. [11], [37] introduced an information theoretic approach
by using representation edit distance (RED) to measure the
editing needed to represent skill programs in an agent’s
model effectively. This aimed at estimating the difficulty of
learning and adapting to novelties. The approach relies on
the algorithmic information theory (AIT) [8] and the minimal
description length (MDL) [9] principle. Agents are built with
a mental model consisting of representation and prediction
portions, by which novelty is determined as a mismatch be-
tween an agent’s mental model expectations and observations.
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These frameworks focused heavily on defining novelty and
its different characteristics, mostly on planning domains such
as CartPole, Monopoly, and self-driving cars. Our work is
significantly different but complementary to these works, as
we proposed a quantifiable approach to understanding the
perception domain characteristics used by learning models or
agents in AI-based domains and is a component in defining
the novelty characteristics.

In [6], authors have proposed a theory to measure the
complexity between distinct domains in AI. The theory is
evaluated using approximations by various neural network-
based AI systems. The approximations are compared to well-
known standards (entropy, cluster distribution, increased num-
ber of dataset classes, etc.), and the outcome shows it meets
intuitions of complexity. Dataset complexity was estimated in
[5], in which generative adversarial networks (GANs) are used
to evaluate (un)interpretability of natural image distributions.
Their approach considers methods to infer probability density
estimates from GANs. The GAN-based algorithms are trained
and tested on both MNIST and CIFAR datasets, to compute the
probability densities. These results may help detect outliers,
domain shifts, and novelties, but they have a high compu-
tational requirement. Classification difficulty was estimated
in [7], where thirteen distinct datasets were considered, and
three different strategies were employed, including Silhouette
score, K-means, and a small neural network-based approach,
ProbeNets. ProbeNets performs best, up to 27 times faster
than training state-of-the-art deep neural networks. Although
these methods attempted to estimate complexity in perception
domains, they relied on classification labels and generalized
datasets on classifiers in a singular environment. Our target
is distinct in that we do not want to estimate classification
difficulty, but estimate the intrinsic properties of the data and
the training environment in a distributed setting.

In federated learning [13], [38], multiple entities possess a
particular portion of training data, and the central server leads
the training process by utilizing a model combining method,
i.e., FedAvg [13], FedAdaGrad [38], FedYogi [38], etc. How-
ever, the existing training mechanisms must consider intrinsic
property, i.e., data quality and distribution attributes, while
training the federated model. Hence, the central server does not
have any notion of domain complexity while choosing entities
during training, which hinders the server from determining the
optimal training algorithm or policy. Depending on the domain
complexity, the training mechanism requires a considerable
number of iterations (in iterative learning methods) to learn or
utilize complex models or converge at lower task accuracy. Our
proposal addresses the complexity of distributed learning irre-
spective of the dataset or environment type in the perception
domain. Classical concepts related to data complexity, such
as heterogeneity, sparsity, and dimensionality combined with
distributed environment variables, are used to compute a single
value corresponding to the difficulty level of the distributed
environment.

III. BACKGROUND AND PRELIMINARIES

A. Perception domain

Perceiving the complexity of the domains where an AI
agent may navigate through is key for the development
of AI systems really adaptable to novelties in the open
world. There are a large number domain features to be
considered toward robust solutions, highlighting the need of
an in depth investigation into this area. The investigation in
[3] has addressed this to some extent. Domain complexity
comprises of both agent-dependent and agent-independent
factors. Agent-dependent domain complexity components
may change for different agents. On the other hand, agent-
independent complexity focus on the inherent features of the
environment itself, and does not change with different agents.
The agent-independent complexity is named intrinsic domain
complexity and the dependent components are called extrinsic
domain complexity. A full domain complexity measure should
consider both intrinsic and extrinsic components, as neither
one of them can independently calculate the difficulty for
adapting to novelties in open world.

Intrinsic domain complexity can be further divided into
environment space and task solution space. The former encom-
passes all elements of the task environment, while the latter is
concerned with only the elements relevant to accomplishing
a given task inside that environment. Both complexities are
further explained, as follows.

a) Environment space: The environment features may
include objects, states, data scheme, parameter, variables, scale
size, observations, or agents internal to the system. It is
intuitive that the environment complexity increases with the
number of the elements in each category and the distinct
attributes and representations for each element, as defined in
the open-world novelty hierarchy levels in [3]. In perception
domain, the environment space accounts for all features,
relationships and eventual phenomena resulting from either
single entities or multiple entities.

b) Task solution space:: The task solution space is related
to both the number and diversity of possible paths to complete
a task. The task solution space grows in complexity as the set
of allowed state transitions increases and as the possible paths
for success get more complex. In perception domains, the task
solution space also would include the set of data-classification
classes [3]. The main causes of complexity in the task solution
space are the number of possible paths, the set of possible
agent interactions, and the restrictions on successful paths to
reach a goal.

B. Federated learning

In federated learning, multiple distinct entities trains a
model based on each ones local dataset. In each communi-
cation rounds a central server combines the model parameters
and returns the global parameters to each entities for next
phase of training. Federated learning objective function [13]
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as following,

min
w∈Rd f(w) =

1

N

N∑
i=1

Fi(w) (1)

where N is the number of local entities and Fi(w) is the local
model parameter whereas f(w) is the global parameter. The
parameter in Fi(w) are trained on local dataset possessed by
each entity in the learning phase.

IV. METHODOLOGY

[3] defined three groups of measures in their proposed
framework for computing the domain complexity, focused
heavily on planning domains. Here we propose intrinsic
complexity metrics to compute dimensionality, sparsity, and
heterogeneity in the perception domain. Finally, we define a
complexity metric for distributed perception domain combin-
ing the proposed intrinsic metrics and the distributed property
of the learning environment.

A. Intrinsic perception domain complexity

1) Dimensionality: i) Environment complexity. For the
general perception domain, the environment consists of the
features in the dataset and the class or output labels (NC).
For a supervised setting, both are present, whereas, for an
unsupervised setting, only the feature space is available. From
an intuitive and classifier-independent point of view, we can
estimate an upper bound for the feature space by considering
two factors -

• Number of samples or size of the dataset (Ns).
• Number of features or the dimension of the dataset (Nd).

Any classifier, regardless of its architecture, would have to
traverse this space in the worst case. So the environment
complexity for any perception domain dataset would be,

ECupper = Ns ∗Nd +NC

We can further reduce the upper bound by considering
the features that have zero variance over the data set. These
features have little to no impact on the classifier’s complexity
or prediction rate. By variance, we try to see how a particular
feature varies over its population. Features with the same value
in all samples are said to have zero variance. So we can further
reduce Nd after dropping zero variance variables all over the
dataset. After reducing the feature space to Nr

d , the upper
bound estimation for the environment complexity is:

ECupper = Ns ∗Nr
d +NC (2)

ii) Intrinsic dimensionality. Intrinsic Dimensionality (ID)
represents the minimal representation of the underlying man-
ifold possible for a dataset [39] without losing any informa-
tion. The manifold hypothesis refers to the fact that many
high-dimensional data sets in the real world lie along low-
dimensional latent manifolds inside that high-dimensional
space [40]. So ID is the smallest dimension required for a
deep learning model to exactly represent a dataset. Manifold
representation is also sensitive to the non-linear structure of
data and learns the high-dimensional structure of the data from

the data itself without using predetermined classifications. This
makes ID an ideal candidate to estimate a lower bound for the
intrinsic metric for dimensionality. For example, in [41], they
estimated the ID for the hand image data (real video sequence
of a hand rotating along a 1-d curve) to be 3, referring to the
different poses that are required to represent a hand image.

We used the maximum likelihood estimator of intrinsic
dimensionality defined in [41]. Consider a dataset with n
images and let Xi represent the individual sample (image)
in the dataset. Let X1, . . . , Xn ∈ Rp be i.i.d. observations
with an embedding of a lower dimensional sample. Let each
sample Xi be mapped to a point xi in the manifold. Specif-
ically, Xi = g(Yi), where Yi are sampled from an unknown
smooth density f on Rp, with some m ≤ p, and g(.) is a
continuous and sufficiently smooth mapping function. Then
m is the intrinsic dimensionality of the data set. Using the
derivation from [41] and following the notations, the maximum
likelihood estimation for m, given k nearest neighbors, is

mk(x) =

 1

k − 1

k−1∑
j=1

log
Tk(x)

Tj(x)

−1

(3)

where T (x) is the average distance from each point to its k-th
nearest neighbor. This estimator is shown to balance bias and
variance better than all other existing solutions [41].

2) Sparsity: In image domain, for calculating the intrinsic
sparsity of the single image, a common method [42] includes:

• create a low resolution (ILR) image of a given high
resolution (IHR) version by downsampling it,

• calculate the absolute difference of the super-resolved
version of ILR (ISR) and IHR, |IHR − ISR|

• sparsity is the percentage of pixels in the |IHR − ISR|
with comparable performance.

In general, sparsity, or parsimony, is defined as the remain-
ing components after a representation of some phenomenon
with as few variables as possible [43]. For the perception
domain, it translates into defining an environment with as few
components as possible while retaining as much information
as possible.

Using Principal Component Analysis (PCA) [44], it is
possible to identify patterns in data on the basis of the
correlation between features, which allows for reducing the
dataset dimension. PCA achieves this by linearly transforming
the data into a new coordinate system where (most of) the
variation in the data can be described with fewer dimensions
than the initial data. Isomap (Isometric Feature Mapping),
unlike Principle Component Analysis, is a non-linear feature
reduction method [45]. It is better than linear methods when
dealing with almost all types of real image and motion
tracking. Neither PCA nor Isomap relies on class labels and
deals with intrinsic properties of data set, hence is a good
indicator of intrinsic complexity.

3) Heterogeneity: In information theory 1, the entropy of
a random variable is the average level of ”information”,
”surprise”, or ”uncertainty” inherent to the variable’s possible
outcomes.

1https://en.wikipedia.org/wiki/Entropy (information theory)
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Fig. 1: Federated Learning Tree

Heterogeneity is defined as the diversity in the data set that
contributes the most to the outcome. The heterogeneity of
space can be measured by the Shannon entropy [46]. It gives
a measurement of how diverse the data set is. Higher entropy
translates into a more heteregeneous data set. The standard
Shannon entropy of a grayscale image is defined as:

H = −
n−1∑
i=0

pi log pi (4)

where n is the number of gray levels and pi is the probability
of a pixel having a given gray level i.

B. Federated learning complexity

While the intrinsic complexity measure the difficulty level
of a single, local domain, it does not account for additional
complexities found in the open world, such as the one imposed
by distributed environments. Because of that, we designed a
framework based on the federated learning (FL) approach,
which has been extensively used for training machine learning
in a distributed way.

We consider FL training environment as a tree based
solution, where we have distinct complexity for each non-
identical paths in the tree. Figure 1 illustrates the FL tree, in
which the height of the tree is the communication rounds (CR)
between the federated master and the participating entities
in the environment, and in this case CR is equal to two.
In Figure 1 we can observe that there exists four entities
in the environment which we denote as W,X, Y, Z, and the
task accuracy is given by A, B, C, D and A1, A2, . . . , D4.
Data distribution of the entities is independent of the learning
environment.

We assume that in our setting, at each communication round
only two entities participate in the training. In practise, all
entities are not available at each communication round for
training. Here, by following each single path we achieve a
distinct accuracy. For instance, in the first CR if W and
Y participate in the learning, the accuracy achieved for the
classification task is A. Likewise, if in the second round X
and Z are engaged in the learning, the classification accuracy
achieved is A4. This is true for each of the paths.

We define the complexity of a federated learning tree (G)
as a composition of two distinct functions such as,

F (d,X) = f(X) + f(d) (5)

where f(X) perceives the intrinsic property of data and f(d)
penetrates the complexity of federated learning environment
by the nature imposed by open-world settings. In this paper,
federated environment complexity f(d) is distinct from envi-
ronment complexity in section 4.1.1. Environment complexity
is defined for singular dataset whereas f(d) is defined for
distributed federated environment. We define the intrinsic
property estimation function as follows,

f(X) = β∥X∥2 = β
√

x2
1 + x2

2 + .....+ x2
n

(6)

where β is a normalizing hyper-parameter and n is the
total number of actively participating entities in the federated
learning environment. In open-world federated learning, data
can be distributed to multiple distinct entities, but only certain
available entities may become interested in taking active
participation in the federated training. Here, xi is the intrinsic
property of the locally available data for participant i. We
define the federated environment complexity as follows,

f(d) = (
1

m1
+

1

m2
+ .......+

1

md
) (7)

where d is the total number of distinct entities in the
federated environment. In federated classification tasks, we
consider each class of non-repeating entity as a distinct entity.
For instance, in a federated binary classification task, if there
exists two federated learning entities and each of the entities
contain data samples from both of the classes, we consider
d = 1. However, if each of the entities contains samples only
from one class, then d = 2. Here, mj is the frequency of the
distinct entity j in the federated environment. The value of
f(d) can range from 0 to d, i.e., 0 < f(d) ≤ d. Hence, the
complexity of a single path of the federated learning tree can
be defined as,

F (d,X) = β(
√

x2
1 + x2

2 + .....+ x2
n) + (

1

m1
+

1

m2
+ .......+

1

md
)

(8)
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In federated learning, the federated master selects from
multiple different paths in the learning tree based on the
availability of the entities. Therefore, we define the learning
tree complexity of the federated environment as the complexity
of the perceived path (π). For instance, in figure 1 we can
compute the complexity of the blue path using equation 8.
This complexity can be the federated learning complexity,
as long as the federated training follows this path. Here,
π is a path in G, i.e., π ∈ P (G). The federated master’s
goal is to estimate the complexity of each available paths
and choose the one which can lessen the complexity in
comparison to the complexity of the other paths while keeping
the federated generalization accuracy as maximum as possible.
Mathematically, with the assumption that all the federated
generalization accuracy is equal, we can denote the objective
of federated master as follows,

min Fπ(d,X); ∀π ∈ P (G) (9)

The federated learning complexity will enable the federated
server to decide on efficient training path as well as will
provide a notion of learning task difficulty beforehand. Thus,
the federated server can fine tune the training process by
selecting effective path and learning model.

V. EXPERIMENTAL SETUP AND EVALUATIONS

In this section we evaluate the efficacy of multiple domain
complexity metrics in perception domain, i.e., (i) Shannon
entropy as a metric of heterogeneity measurement, (ii) PCA-
based sparsity measurement, (iii) environment complexity and
intrinsic dimensionality, (iv) shallow convolutional neural net-
work (ProbeNet) based complexity ranking, and (v) implicit
data distribution based federated learning complexity.

We conduct the experiments using Python 3.8.10 in a
windows machine of Intel core i7-8th generation with 16
GB of memory. In the following we present and describe the
experimental results with appropriate discretion.

A. Datasets

As the focus of our work is to evaluate perception domain,
we chose to work with the classical MNIST dataset, as it is
simple to start with and has some variations that are appropri-
ate for evaluations of different complexity levels. Here we use
three variants of this dataset: MNIST handwritten digit [47],
Fashion-MNIST [48] and EMNIST-digits [49]. Both MNIST-
handwritten and Fashion-MNIST contains 70, 000 gray-scale
images, with 60, 000 training samples and 10, 000 testing
dataset. EMNIST-digits contain 280, 000 characters. For all
of them, the dimension of each image is 28× 28 pixels, and
the value of each pixel can be within 0-255.

B. Heterogeneity, sparsity, EC and ID

To show the inherent complexity of the three variants
of MNIST, we have conducted experiments to measure the
heterogeneity (entropy), the sparsity (number of sparse compo-
nents for explaining variance, r2 of 80% or 95%), environment
complexity (with a variance threshold vθ of 0 and 90), and

intrinsic dimensionality for each variant. We use the Scikit-
dimension [50] package for ID estimation, Scikit-image [51]
for Shannon entropy estimation, Scikit-learn [52] for sparsity
and EC estimation, and keras [53] for implementing the
federated ProbeNet models.

The results are illustrated in Table-I , where we can observe
that by the obtained values of sparsity, heterogeneity, environ-
ment complexity, and intrinsic dimensionality, Handwritten-
MNIST is the least complex dataset and Fashion-MNIST is the
most complex one, which is explained by their variation, and
EMNIST-digits is between both. Though in cases, i.e., sparsity
at r2 = 95%, the complexity order changes. This implies
that Fashion-MNIST requires a lot of sparse components for
explaining variances in between 80% and 95%. When we
consider only the zero values as variance threshold, we can
see Fashion-MNIST does not include many zeros over the
data set, whereas if we consider pixel value 90 as threshold,
it still has the largest environment complexity. We can infer
the geometric complexity of our datasets from ID and we can
see from MNIST to Fashion-MNIST the variance increases
due to the increasing size and computational complexity. The
nuanced increase also indicates that the datasets are all derived
from MNIST.

C. ProbeNet as a complexity benchmark

We used a shallow ProbeNet [14] to measure the effective-
ness of our proposed domain complexity metric. To determine
the relationship between Probenet and the benchmarks on
MNIST variants, we have evaluated the accuracy of Probenet
over the three variants of MNIST, as a measure of complexity.
We used a shallow convolution neural network as ProbeNet,
and extrapolated the relationship between ProbeNet and the
benchmark accuracy [54]–[56]. The results are depicted in
Figure 2a. There is a positive linear relationship between
the two models. This is important since it allows us to use
ProbeNet as a benchmark model to measure the accuracy
of our proposed metric. Throughout the rest of the paper,
we assume that the accuracy of ProbeNet ranks domain
complexity in reverse order.

D. Federated Learning Complexity

In this section we assess the effectiveness of our proposed
complexity metric, F (d,X). We assume five distinct feder-
ated clients in the learning environment, where each client
contains non-identical local data. Each client uses identical
shallow ProbeNet model and the federated server relies on the
FedAvg [13] algorithm for each global update. The accuracy
results presented here reflects the accuracy of the federated
ProbeNet on the test data. Effort represents the number of
communication rounds in the federated learning context.

In these experiments we set the values of local iteration
for each client to 1, and each client contains similar amount
of data, allowing us to ignore possible data amount disparity.
For each respective experiments, we run 100 communication
rounds. In the following sections, we describe the impact of
different components of our proposed complexity measure-
ment, F (d,X).
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TABLE I: Heterogeneity, Sparsity, Environment Complexity, and Intrinsic Dimensionality Measurement

Dataset Heterogeneity Sparsity (r2 = 80%) Sparsity (r2 = 95%) ECupper(vθ = 0) ECupper(vθ = 90) ID
Handwritten-MNIST 1.60 740 629 717 530 13.368

EMNIST-digits 2.86 751 685 697 557 14.095
Fashion-MNIST 4.11 760 594 784 745 14.547

Fig. 2: (a) Shallow CNN accuracy vs. benchmark accuracy for Fashion-MNIST, Handwritten-MNIST and EMNIST-Digits, (b)
Federated environment complexity f(d) vs. shallow federated learning accuracy for Handwritten-MNIST when f(X) is fixed,
(c) Federated environment complexity f(d) vs. shallow federated learning accuracy for Fashion-MNIST when f(X) is fixed.

Fig. 3: (a) Federated environment complexity f(d) vs. effort (communication rounds) for MNIST and Fashion-MNIST, (b)
Federated accuracy vs. Federated intrinsic function f(X), reflecting heterogeneity (entropy), for Fashion-MNIST,

Handwritten-MNIST and EMNIST-Digits, with f(d) fixed at 2, (c) Federated accuracy vs. Federated intrinsic function f(X),
reflecting sparsity (number of sparse components for explaining 80% of variance), for Fashion-MNIST, Handwritten-MNIST

and EMNIST-Digits with f(d) fixed at 2.

1) Federated learning complexity vs Federated environment
complexity: To measure the impact of the federated envi-
ronment complexity f(d) on federated learning complexity
f(d,X), we experiment on five different values of d, ranging
from 1 to 5. Figure 2b and 2c depict the relationship between
maximum (or average) accuracy and f(d) for Handwritten-
MNIST (the easiest) and Fashion-MNIST (the hardest), re-
spectively.

The maximum accuracy is computed here by taking the
maximum test accuracy among all the communication rounds,
and the average accuracy is the average test accuracy in the
communication rounds. The results show us that as the value
of f(d) increases, the value of both accuracy decreases. This
behavior is in line with the benchmark classifier.

We also evaluate the amount of effort needed by the fed-
erated learning complexity as a function of f(d). The results
are illustrated in Figure 3a, where we observe that as f(d)
increases, the complexity of the federated learning increases
too, while the intrinsic features (i.e., heterogeneity, sparsity,

EC and ID) remains identical. In this case effort is defined as
the earliest communication round in which a certain amount
of federated generalization (or test) accuracy is achieved. We
set this threshold to 60%. Since federated learning can achieve
at least 60% accuracy in different distributed settings for all
the three variants of MNIST.

2) Federated learning complexity vs Intrinsic complexity:
Since the measured values for the intrinsic complexities in
Section IV-A directly impact the computation of f(X), we
have evaluated the accuracy of the federated learning against
f(X), for all the variants of MNIST. While calculating f(X)
we set the value of β at 1 for entropy and for sparsity we set
β = 1√

n
.

The results in figures. 3b and 3c show the generalization
accuracy of the federated learning against f(X). We can
conclude that f(X) has a inverse correlation with accuracy,
which translates into positive correlation with complexity.
Inversely, from figures 4a and 4b, we can observe that with the
increase of f(X), the effort for threshold accuracy of 60% also
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increases. Overall, the complexity ranking of Fashion-MNIST,
EMNIST-digits, and Handwritten-MNIST goes from high to
low.

3) Federated complexity metric vs. Federated test accuracy:
In order to evaluate the effectiveness of our proposed com-
plexity metric, we compared the federated accuracy with the
proposed metric F (d,X). The results, considering maximum
and average accuracy, are depicted in Figures. 4c and 5. We
can observe that the average federated accuracy is higher
correlation (R2) with the federated complexity F (d,X) than
the maximum accuracy.

In these evaluations, R2 value for maximum accuracy and
F (d,X) is 0.81, with standard error of approximately 7%,
whereas R2 value for average accuracy and F (d,X) is 0.85
with standard error of approximately 6%. So, we can conclude
that the federated complexity is indeed correlated with both the
average and maximum accuracy, which implies that increase in
F (d,X) will decrease the accuracy of the federated learning.
Thus, F (d,X) can be considered as a standard metric for
evaluating federated learning complexity.

4) Discussions on federated learning complexity: The
evaluations confirm that the federated complexity function
F (d,X) encapsulates both the intrinsic properties of the data
and the features of the federated environment, which makes it
an ideal candidate to measure the rational complexity of the
perception domain in the distributed environment.

For instance, in figures 2b and 2c, the intrinsic properties
of the domain is fixed, but the accuracy is changing with the
change in federated environment complexity. On the other-
hand, in figures 3b and 3c the accuracy changes with the
intrinsic property change. In both cases, the federated environ-
ment variable is fixed. Though in the figures we only consider
heterogeneity and sparsity as intrinsic properties, the accuracy
trend also holds true for other intrinsic properties, i.e., envi-
ronment complexity, EC, and intrinsic dimensionality, ID. We
can observe that considering only one part of the F (d,X) does
not reflect the complete complexity of the perception domain
in distributed environment. Based on this, it is reasonable to
conclude that our proposed approach for measuring perception
domain complexity in federated distributed environment is
effective.

VI. CONCLUSION AND FUTURE WORKS

We have proposed a methodology to compute domain
complexity of distributed datasets aiming at improving per-
formance of AI systems in the open world. The proposed
approach combines well-known complexity metrics such as
heterogeneity, sparsity, environment complexity and intrinsic
dimensionality with the Federated Learning framework as a
robust distributed training technique. This is aimed towards
a single metric to measure the complexity of distributed
environments focused on perception domain. The performance
evaluations were conducted on the classical MNIST dataset
and its variants, and the outcome showed that our proposed
metric achieves same complexity rankings perceived by the
literature. The experiments show a correlation of 0.85 to
federated learning generalization accuracy with the proposed

domain complexity metric. We believe that our work can
be very beneficial for future AI systems in dealing with
uncertainties in the open world, in terms of quantifying the
domain complexity for different environments. This is going to
be very useful to determine agent performance bounds in any
given environment, preventing wastage of computation effort
for the agents. We are publishing our work with hopes of a
widespread conversation within the open world AI community.

As future work, we will evaluate different strategies for the
federated learning in our metric such as, variable distributed
data size, distinct environments, autonomous driving datasets,
etc. These additional steps will certainly render the proposed
approach more general and robust.
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